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We argue that the computational requirements for presently envisaged cellular-automaton simu-
lations of continuum fluid dynamics are much more severe than for solution of the continuum

equations.

PACS numbers: 47.10.+g

It has recently been suggested!'? that cellular auto-
mata (CAs) [defined as discretely and locally linked,
finite- (and few-) state machines] may be an effective
way to compute complex fluid flows. These automata
have the advantage that they may be simply and
perhaps inexpensively constructed with use of specially
designed parallel hardware. With suitable interaction
rules, it has been argued,“? the space-time average
kinetic behavior of the CA system follows the in-
compressible Navier-Stokes dynamical equations.
While the Navier-Stokes equations for continuum
fluids can be calculated efficiently on parallel-
architecture machines, it is probably easier to make ef-
ficient use of the parallel architecture with CAs. In
this Letter, we wish to point out that there are some
considerations that require resolution before these
methods can be considered to be a viable alternative to
traditional continuum mechanical methods for high-—
Reynolds-number fluid dynamics.

Let us compare the resolution and work require-
ments for a CA simulation of a high—-Reynolds-
number flow with those of direct numerical solution of
the incompressible Navier-Stokes equations. It is well
known>* that, at Reynolds number Ng., the Kolmo-
gorov and Batchelor-Kraichnan theories of three- and
two-dimensional equilibrium range dynamics, respec-
tively, predict that the range of excited scales is of or-
der Ng/* and N2 and the computational work re-
quired to calculate a significant time in the evolution
of large-scale flow structures is of order N3, and N3/
in three and two dimensions, respectively.

The suggested evolution rules for CAs to reproduce
hydrodynamic behavior are based on conservation laws
of mass, momentum, and energy. Dissipation is
modeled through the thermalization of coherent hy-
drodynamic modes. Therefore, the lattice resolution
of the CA calculation must be much finer than that of
the hydrodynamic simulation, the latter requiring the
retention of only those degrees of freedom describing
motions on scales of the dissipation range or larger.
Thus, the lattice spacing a must be smaller than the
dissipation scale m in the turbulent fluid.

We now discuss some conditions that CA models
should satisfy to describe high—Reynolds-number fluid
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flows. We present three successively more restrictive
arguments that show that n/a must grow rapidly with
Reynolds number.

Signal-to-noise ratio.—The hydrodynamic velocity in
the CA simulation is calculated by subdividing the
computational domain into cells with linear dimen-
sions >> a, averaging over the CAs within a (finite)
cell, and smoothing (filtering) the resulting (noisy)
velocity field. Thus, the hydrodynamic velocity at a
point x is the (space-time) filtered velocity of the CAs
in the cell C, centered at x, vy(x)=(v(x)), where
the local velocity in C, is

vx)=1 3o, (1)
Miec,

where n is the number of occupied sites / within the
cell. We assume that the possible velocity values at an
occupied CA site are v;= * vy, where vy, is the con-
stant (thermal) velocity over the CA grid. At low
Mach numbers, vy << vy,. In this case, the fluctua-
tions in v(x) are of order n~ Y?y,,. In order that the
hydrodynamic velocity found in this way may be a
good representation of the continuum hydrodynamics,
it is necessary that the noise n Y/ 2vn be small com-
pared to the smallest significant hydrodynamic veloci-
ty. The smallest significant hydrodynamic velocity is
the eddy velocity on scales of order of the dissipation
scale . In three dimensions, n= 0 ((e/v?) ~"*) and
the eddy velocity on the scale of 7 is v, =0 ((er) ).
Here v is the viscosity and € is the turbulent energy
dissipation rate per unit mass. Thus, we require that
the number of CA sites n within a cell of size n be at
least

n >> v/ (ev)V2 (2)

Since e=O0(U3/L) where U is the large-scale rms
fluctuating velocity and L is the associated large-scale
length of these velocity fluctuations, we find that
n >> NY2M?, where Ng.=UL/v is the Reynolds
number and M = U/v,, is the Mach number.’ Since
the number of cells of size m within a three-
dimensional turbulent eddy of size L scales as N,%{,f‘,
the overall number of CA sites must increase at least
as N4/ M2
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Since the effective evolution time of the fluid sys-
tem is L/U, while the time step on the CA lattice is
a/vy, it follows that the CA simulation requires at
least L/aM steps in time. Since the computational
work for each site update is of order 1, it follows that
the CA simulation requires at least of order (Ng./
M)'W3 work.

In summary, the above signal-to-noise considera-
tions suggest the following lower-bound estimates for
the computer storage S and work W for CA simula-
tions of high—-Reynolds number, low-Mach-number
flows (where, for reference, we include the corre-
sponding estimates for the continuum Navier-Stokes
equations): for CA (2D),

S=N2/M?, W=NJ*/ M
for Navier-Stokes (2D),°

S=Ng., W=N2,
for CA (3D),

S=NWA /ML W= (Ng M)'V3,
for Navier-Stokes (3D),’

S=Nglt, W=Ni..

Upper bound for the Reynolds number.— A more
stringent condition on the Reynolds-number depen-
dence of the minimal number of lattice sites in a CA
simulation of hydrodynamics is found as follows. If
the discrete velocity of the CAs is * v, (again, the
thermal velocity or sound speed on the CA lattice) and
the lattice spacing is a, then the kinematic viscosity v
on the lattice is at least of order va. For the CA to
give a self-consistent hydrodynamic simulation, the
viscosity determined on the ‘‘molecular’” level must
equal the viscosity governing the dissipation of the hy-
drodynamic modes. Thus the Reynolds number of the
simulated fluid can be at most UL /v or ML /a. Since
the number N of CA sites in the lattice is of order
(L/a)4, where d is the dimension of space, we obtain
the result that N must be at least of order (Ng./M )“.
As above, the CA simulation of the flow requires at
least L /aM steps in time. It follows that the CA simu-
lation requires at least of order (Ng./M )¢ memory
and of order N&F'/M9*? work.

These estimates for storage S and work W based on
lower bounds for the effective viscosity on the lattice
are of order

S=(Ng/M)?2, W=Ng. /M
for CA (2D),
S=Nge, W=NF
for Navier-Stokes (2D);
S=(Ng/M)3, W=Ng. /M’
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for CA (3D);
S=NRt W=Ng

for Navier-Stokes (3D).

Hydrodynamic fluctuations.—The CA system will
yield a self-consistent continuum hydrodynamic de-
scription only if the thermal energy fluctuations on hy-
drodynamic spatial scales are small compared to the
energy of the hydrodynamic modes on corresponding
length scales. If the ‘“‘mass’’ of an occupied CA site is
m, its energy is d/2m vfh in d space dimensions. Then
the fluctuation in total thermal energy over a cell with
n occupied CAs is Vnmv?,. (We note that in a CA
with velocity states * v,,, energy fluctuations are pro-
portional to density fluctuations.) The corresponding
hydrodynamic energy within a cell of size n is pn’vj,
where vy is the hydrodynamic velocity and p is the hy-
drodynamic density. In three dimensions, the dissipa-
tion scale is n and the associated hydrodynamic veloci-
ty is v,. Also, the relation between m and p is nm
= pm’. Thus, for thermal fluctuations to be small, we
must require that n >> Ng./M* In two dimensions,
the corresponding result is n >> N3./M*.

This argument shows that the storage and work re-
quired for a self-consistent hydrodynamic description
using CAs is of order

S=NZ./M* W=N2/M’
for CA (2D),
S=Nge,2 W=NR2

for Navier-Stokes (2D);
S=Nég/4/M4’ W=N}{3e/3/Ml9/3
for CA (3D),
S = ng/e“n W = Nl%e

for Navier-Stokes (3D).

The CA models approximate fluids that are by their
nature necessarily compressible. This means that an
equation of state for pressure is needed. However,
self-consistency requires that thermodynamic pressure
fluctuations over dissipation scales be small. This
latter condition leads to results identical to those just
obtained by use of energy estimates. Indeed, it is
known® that the rms thermodynamic pressure fluctua-
tions in a volume x* are (pkTc?/n*)"2, where T'is the
temperature of the fluid and c is the sound speed. But
the hydrodynamic pressure fluctuations over length
scales of order m are of order p(ev)Y?. Since kT
=mv? and ¢ = vy, the previously given estimates
apply.

We believe that these pessimistic estimates for high
Reynolds numbers and low Mach numbers must be
overcome before CAs can be an effective modeling
tool for complex fluid flows. This can, in principle, be
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done by averaging over the shortest scales a << 7 in
order to reduce the number of degrees of freedom.’
However, it seems that this renormalization can be
useful (in the context of local, few-bit, parallel compu-
tations) only if it does not generate nonlocal, complex
interactions in the set of basic rules defining CAs. Un-
fortunately, we do not now understand why this kind
of ‘‘turbulence transport’’ modeling should be either
easier or more successful on the CA lattice than for
the continuum equations or for molecular dynamics.

While the above estimates for CA simulations of
turbulence are quite pessimistic, there may be cases in
which CA simulations of turbulence may be effective.
In a turbulent boundary layer, the local Reynolds
number is O (1) in the viscous sublayer and is modest
within the buffer layer. A CA model could be effec-
tive in these regions in the modeling of turbulent burst
formation and evolution. However, this application
requires the development of three-dimensional CA
models and suitable techniques to match the outer re-
gions of the flow.
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