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Gain on Free-Bound Transitions by Stimulated Radiative Recombination

Ernst E. Fill
Max Pla-nck Ins-titut fiir Quantenoptik, 8046 Garchtng, Federal Republic of Germany

(Received 16 October 1985)

This paper investigates the possibility of observing gain on a free-bound transition, i.e., by stimu-
lated radiative recombination. The basic equations are derived from the Einstein-Milne relations
for the continuum. Gain formulas for various plasma conditions are given. A continuously tun-
able short-wavelength laser seems to be possible.

PACS numbers: 42.55.—f

The intensive search for new lasers and the chal-
lenge to extend the region of known laser lines into
the uv and soft x-ray regime has Ied to the investiga-
tion of high-density plasmas as possible laser media.
Plasma lasers emitting in the infrared, visible, and uv
have been reported, '~ and recently, substantial gain in
the soft x-ray region has been demonstrated in plasmas
produced by high-power laser radiation. 5 6 All of these
experiments involve generation of inversion between
bound states of an ionized species in the plasma. The
purpose of this Letter is to show that conditions can be
found under which there is gain at a free-bound transi-
tion, i.e., a transition the upper level of which lies in
the ionization continuum of the lasing species. The
recombination continuum originating from transitions
of this kind produces a large part of the continuum
emission of high-density plasmas. 7 It is clear that to
achieve gain at such a transition, the plasma must be
far from Saha-Boltzmann equilibrium. As shown in
the main part of the paper, several possibilities of such
nonequilibrium exist, e.g. , if the ions are highly over-
stripped or if the electron velocity distribution is non-
Maxwellian.

Aside from its scientific interest, a free-bound laser
could provide a number of advantagous features: The
energy stored in the free-electron gas of a plasma
would be directly extracted by the laser pulse, laser
operation at rather short wavelengths would be possi-
ble, and, last but not least, such a laser would be tun-
able since the upper level is a continuum of states.

The principle of the laser involves stimulated transi-
tions between two energy levels of a system. Except in
the free-electron laser, such energy states are rep-
resented by discrete levels of an atom, ion, or
molecule. The basic equations governing radiative
transitions between such states are the Einstein rela-
tions which relate the coefficients of spontaneous
emission, absorption, and stimulated emission to each
other. To extend the laser principle to free-bound
transitions, the basic relations between the rates of
spontaneous radiative recombination„photoionization,
and stimulated radiative recombination must be ap-
plied. They can be derived by analogy with the Ein-
stein radiation theory and are known as the Einstein-
Milne relations for the continuum. 8

Wi n, (u) [F(u) + G(u) I„]u du dt, (2)

where Wi is the number density of the ions, n, (u) is
the distribution function of the electrons, and F(u)
and G(u) are the coefficients for spontaneous and
stimulated recombinations, respectively.

By postulating that the radiation of a system in
Saha-Boltzmann equilibrium obeys the Planck radia-
tion law, we obtain the Einstein-Milne relations, which
relate F(u), P„, and G(u) to each other:

F(u) = (2hv'/c') G(u),

p„= (8mm'u'gi/h'go)G(u), (4)

where m is the electron mass and gi and go are the de-
generacies of the ion ground level and the final atom
level. Equations (3) and (4) are the continuum analog
of the Einstein relations for emission and absorption
of radiation. They are valid even under nonequilibri-
um conditions and can be used to derive the absorp-
tion coefficient of a plasma by photoionization,
corrected for stimulated emission. Using

hv = mu2/2+ Eb,

where Eb is the binding energy of the lower level„one
obtains

u du= (h/rn)dv

and, finally, for the absorption coefficient,dl„W, n, (u') hG (u)
'

P P/P „

There is gain instead of absorption if the second term
in the bracket dominates. Reversing the order of the

Let the number of photoionizations per unit volume
in time dt and in the frequency range (v, v + dv ) be

Wop„l„dv dt,

where Wo is the number density of the atoms, p„ is the
probability of photoionization of an atom per unit in-

tensity, and I„dv is the intensity for the radiation in
this frequency range. Furthermore, let the number of
radiative recombination by electrons in the velocity
range (u, u+du) be
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term and inserting for G(~) from Eq. (4), one obtains
for the gain

h3 Ion„=o„N(n, (v) —No,
8mm'u' gt

h
0,„=o.„N)N,' 87rm'n't'(2kT, /m)' ' gi

where N, is the number density of the electrons and

T, is the electron temperature. One has numerically in
mixed units

a„=tr„[1.66x10 N N, (kT ) 3t2go/g —N ]

(10)
~here n„ is in inverse centimeters, o-„ is in centime-
ters squared X}, %&, and %p are in inverse centime-
ters cubed, and kT, is the electron temperature in
electronvolts.

(b) The electrons have a narrow velocity distribution

QfOMpl6 'Up.—~1th the velocity distribution approximat-
ed by a "rectangular" one so that n, (v) =n, for
vo —bu/2 ( u & vo+bu/2 and 0 elsewhere, the
number density of free electrons is

A;= n, Av.

Using the relations

(12)E„=m~&2 and bE„=m~, b~

for the energy and the energy spread of the electrons,
respectively, one obtains for the gain

h Ãp
Ol (T NtNp ~t2 3t2 ~ 2 No (13)

8(2~) m bE, g&

where p„h„has been replaced by o.„ the photoioniza-
tion cross section.

Equation (8) is the free-bound analog of the usual

gain equation for a laser with the inversion replaced by
the term in the bracket. Note that the lower level of
the transition is not necessarily the ground state of the
atom and therefore No may be the number density of
any level of the atom. Equation (8) is also valid for
ionization stages higher than one. In this case N~ is
the number density of ions in, say, the ionization stage
k, and No the respective density in the ionization stage
k-1. To simplify the terminology in the following, the
two species will still be called ions and atoms.

For the gain to be positive, a situation very far from
thermal equilibrium is required. The electron and ion
densities must be high but the population of the lower
level must be much smaller than in Saha-Boltzmann
equilibrium. Depending on the distribution of the
electron gas in phase space, three cases can be defined:

(a) The electrons have a Maxwellian velocity

distribution. —In this case n(u)/v is a maximum for
u =0. The gain is maximized if the upper level is just
the ionization limit of the atom and is given by

„= „[N,g,/g, -N, ],

where go and g, are the degeneracies of the lower

(bound) level and of the electron gas, respectively.
The degeneracy of an electron gas in the presence of
ions with number density Nt is given by9

r [j2t
4gi Eel

n
bE„. (16)

In this expression a factor of 2 is included, which takes
care of the two opposite directions of propagation of an
electron with respect to the photon propagation vector.
Inserting Eq. (16) into Eq. (15) leads to the gain for-
mula of Eq. (13), as required.

(c) The electrons not only have a narrow velocity distri
bution but also have high directionality. —This occurs,
for example, in an electron beam. In this case the
electron distribution is highly peaked in phase space
and their degeneracy g, is very low. The smallest pos-
sible value of g, is unity, and therefore the highest
possible gain is given by

(goN. —No) (17)

The condition of unity degeneracy determines from
Eq. (16) how narrow the distribution of electron velo-
cities and directions for a given electron energy and
ion density has to be.

Consider a plasma consisting of completely stripped
ions of charge Z and density N& in an electron gas of
density ZN~. The electrons are assumed to have a
Maxwellian velocity distribution and therefore max-
imum gain occurs from the ionization limit into a hy-
drogenlike state of quantum number n. The lowering
of the ionization limit in a plasma is neglected for this
estimate and the frequency of the emitted radiation is
given by

hv = 9P Z2/n2,

where 9P is the Rydberg constant. An approximate
value of the photoionization cross section can be ob-
tained from the Kramers formula with unity Gaunt
factor":

o', = 2.76x1029Z4/&3ns = 7.76& 10 '8n/Z2 (19)

Inserting this into Eq. (10), with go/g~ = 2 n2 for hy-

or with the same units as in Eq. (10),

0,„=o„(1.26X10 N)N, b E,, 'E, , 't2go/g, —No),

(14)

where E„and b, E„are in electronvolts.
Equation (13) can also be derived directly by writing

for the gain
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drogenlike ions, one obtains for the gain

n„= 1.29 x 10 '9(N(/Z") (kT, /Z') '~'2n'

—7.76x 10 '8Non/Z2. (20)

Taking Z=1, kT, =5 eV„n =1, and Ni =1020 cm
one has gain for No ( 2.96x 10'7 cm 3. If No is negli-
gible compared with that number, a gain of 2.3 cm
is achieved at a wavelength of 91.2 nm.

To evaluate the pumping requirements for the reali-
zation of such plasma conditions, the loss of "inver-
sion" by recombination has to be taken into account.
Any ionizing radiation can be used for pumping. The
necessary pump power absorbed by the medium is
given by the recombination rate R«, multiplied by the
average energy for reionization of an atom. One ob-
tains

P=R„,(++kT, )1.6x10 '9 W/cm3. (21)

Taking the recombination rate from Bates, Kingston,
and McWhirter, "one obtains in an optically thin plas-
ma

P = 8.6 x 10'2 W/cm3 (22)

Nos'"' =1.66x10 "N N (kT ) '~'(go/g )

x exp(Eb/kTe ),

from which and Eq. (10) it follows that there is gain if

No ( Nos'"' exp( —Eb/kT, ) (24)

Gain to an excited level of the atom is therefore
achieved if the temperature of the atom, as deter-
mined by the population of its bound levels, is much
lower than the electron temperature determining the
degree of ionization.

A disadvantage of case (a) is that the gain is max-

A free-bound laser would be an interesting way of
generating coherent radiation in the uv and x-ray re-
gions of the spectrum. Since the upper level is in the
continuum, a given atom would lase at a much shorter
wavelength than for a bound-bound transition. A ma-

jor advantage would be the possibility of continuous
tunability. It turns out, however, from the gain for-
mulas of the preceding discussion that the require-
ments on a medium for it to exhibit reasonable free-
bound gain are rather severe. Typically, electron and
ion densities greater than 1020 cm 3 are required with
a population of the lower level of less than 10'8 cm
(see the previous example).

The situation easiest to verify experimentally is case
(a), which only requires that the population of the
bound level be much lower than given according to the
Saha equilibrium. The Saha equation yields

imum at the ionization limit (unless a„has a distinct
maximum in the continuum), and therefore such a
laser would only marginally be a free-bound laser.

In case (b) lasing from well within the continuum is
achievable. Because of the high self-relaxation rate of
the electrons, the required narrow velocity distribution
can probably be maintained only for a very short
period of time and traveling-wave excitation would be
necessary. However, if the energy spread of the elec-
trons can be made sufficiently small, considerably
higher gain than in case (a) could be obtained.

Case (c) could be verified by crossing an electron
beam and an ion beam. The population of the lower
level would be zero in this case, making the gain in
any case positive. For its magnitude to be experimen-
tally measurable, the current densities of existing elec-
tron beam generators would have to be considerably
increased.

Under high-density plasma conditions the gain will
be reduced by scattering and absorption. The total
cross section of an electron for scattering a photon is'2

a.,= 6.65 x 10 25 cm' (25)

Under the conditions of the example this results in

Pyg=0. 4 cm (27)

and the gain is reduced by 17'/0.

It is interesting to discuss the effects which deter-
mine the gain profile of a free-bound laser. The con-
tribution of the lower (bound) level to the linewidth
will be negligible in most cases and the gain profile will

be controlled by the term [n, (v)/v']a„(v ) in Eq. (8),
i.e., by the electron velocity distribution and the varia-
tion of the photoionization cross section with frequen-
cy. If the electron velocity distribution is narrow, as in
cases (b) and (c), a „(v) can be considered as constant
and the gain bandwidth is given by the electron energy
spread. In the case of a Maxwellian electron velocity
distribution [case (a) ], however, the variation of
a-„(v) with frequency has to be taken into account.
For lasing into hydrogenic states one obtains, by use of
Eq. (21), for the functional form of the gain profile
(v~v, )

ce„(v ) = ao exp[ —(v —vo)/kT, ] (vo/v'), (28)

where ao is the gain at the maximum, given by Eq.
(10), and vo is the frequency at maximum gain, given
by hv0=9F Z2/n2 For the pr. evious example the gain
is reduced to half of its maximum value within a

and so scattering can safely be ignored. The main
photon-loss mechanism is free-free absorption by the
electron gas, given by'2

Pyg = 3.4 x 10bZ2N2 (kT, /Z') '~'v

x ( 1 ~
—b ujkre) cm

—i (26)
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bandwidth of b, v/co= Q. 125.
It is clear that the emission bandwidth of a laser

operating on a free-bound transition will be much
smaller than the gain bandwidth, since gain narrowing
and possible cavity effects will reduce the spectral
width of the emission. However, such radiation would
still extract energy from all of the electrons since self-
relaxation would quickly restore any holes burnt into
the electron velocity distribution. In other words, the
transition can be considered as homogeneously
broadened down to a pulse duration given by the self-
relaxation time of the electrons.

In summary, by analogy with the situation at a
bound-bound transition, an "inversion" can be de-
fined for a free-bound transition which leads to gain by
stimulated radiative recombination. Gain formulas for
three cases have been derived, the first being charac-
terized by a Maxwellian electron velocity distribution,
the second by a velocity distribution approaching a del-
ta function, and the third by further restriction of the
electrons in phase space by directionality.

Though difficult to achieve, gain on a free-bound
transition would certainly be an effect of high interest,
possibly leading to a tunable short-wavelength laser. A
more detailed discussion concerning pumping require-
ments and competing processes will be left to a further
publication.
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