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Sensitivity of a Hopf Bifurcation to Multiplicative Colored Noise
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The location of a Hopf bifurcation in parameter space may be postponed or advanced by multipli-
cative colored noise depending on the interplay between the time scale of the noise and the rotation
period of the phase variable.

PACS numbers: 05.40.+j

The effect of multiplicative noise on nonequilibrium
systems is currently the object of considerable
research, particularly into the capacity of such noise to
give rise to so-called "noise-induced transitions. "'
The latter can be viewed, in most experimental exam-
ples known so far, 2 6 as a shift of a preexisting deter-
ministic instability: The noise displaces, by an amount
proportional to its intensity, the location in parameter
space of an instability already present under noiseless
conditions.

In the analysis of this behavior it is usual (i) to take
as a starting point the Landau equation, or more gen-
erally the normal-form equation, giving the long-time
deterministic dynamics of some slow mode(s) near the
instability; (ii) to take the noise into account by let-
ting some parameter fluctuate in this reduced evolu-
tion equation; and (iii) to consider that the noise is
white. This is in line with (i): The noise indeed is not
affected by the instability; hence, the closer one is to
the instability point, the more separated the time
scales of the slow mode(s) and of the noise become
and the more appropriate the white-noise idealization
appears.

The reliability of these simpliflcations, however,
does not depend solely on the occurrence of a critical
slowing down; it also requires that the coupling of the
noise with the "fast" variables, which do not slow
down at the instability, be appropriately modeled. This
condition has been scarcely studied. Usually the role
of the fast variables is overlookeda and the adequacy of
(i)-(iii) is simply postulated; the justification comes
a posteriori insofar as the outcome of the analysis
agrees with the experimental results. This is, howev-
er, not always the case; e.g. , the noise-induced shifts
of electrohydrodynamic instabilities in liquid-crystal
systems cannot be explained by the addition of white
noise to the bifurcation parameter of the Landau equa-
tion for the Unstable mode. 6 9'0

Our motivation here is to investigate the coupling
between noise and a fast variable in the case of a well-
known chemical model (Brusselator)" presenting an
instability frequently met in nonequilibrium systems:
the Hopf bifurcation. We find that even in the limit of
vanishingly small noise intensity, it is the interplay

between the noise and the "fast" phase variable which
determines whether the bifurcation is postponed or ad-
vanced.

The effect of multiplicative white noise has been
considered recently in diverse physicochemical oscilla-
tors. '2 The approaches based on normal forms'3 "
predict that the noise tends to stabilize the trivial
state. '6 Furthermore if, as recommended in Ref. 1,
the bifurcation of the most probable value of the prob-
ability density is taken as index of bifurcation, one
finds that the noise postpones the instability by an
amount proportional to its intensity. The reason is

easy to see on the normal-form equations of a Hopf bi-
furcation: p=h. p —ReKp3 and 0= II —ImKp . p
describes the radial motion undergoing a critical slow-

ing down when the bifurcation parameter A. 0. 0 is
the phase, 0 the rotation period, and K a parameter.
If white-noise fluctuating forces are superimposed on
the constant average value of X and II, it is clear
(since the equation for p is decoupled from the one of
&) that p is a stochastic process behaving essentially
like x in the Landau equation x=8.x —x in which a
white noise of intensity a is superimposed on &. As
is well known, '2 the bifurcation of the extremum of
the probability density for x is then postponed by the
noise from X=O (deterministic case) to the value
X = o 2/2. For p, this implies that the limit-cycle onset
is postponed.

We now consider the Brusselator model:

X = A —X+ X2 Y —BX, Y = BX—X2 Y.

X and Yare reactant concentrations; A and 8 are con-
trol parameters. The unique steady-state solution
X, = A, Y, = 8/A undergoes a Hopf bifurcation at
8 = 8, = 1+A2. We study the effect of the fluctua-
tions of 8 on this transition when the average (8) is
constant and close to 8, : We put (8) —8, = Ie',
where e is a small parameter and I = I, 0, —1 for (8 )
above, at, or below 8, . We do not, however, invoke
the proximity of the bifurcation point to adopt the
white-noise idealization [cf. (iii)]. More realistically,
we model the noise by a colored Ornstein-Uhlenbek
process z, obeying the stochastic differential equation
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(SDE)

dg, = —yK 2z, dk+ K 'o. d8', .

W, is the wiener process. The scaling parameter K ap-

pearing in (2) provides a convenient measure of the
"distance" from the white-noise situation'7 (see also
Ref. 1, Chap. 8): For K 0, the correlation time of
the noise, ~, = K /y, goes to zero; the stationary prob-
ability density of z, given by

p, (z) = (2ma') '/'exp[ —(z'/o')/2],

with o = cr2/2y, however, is independent of K. Three
time scales govern the dynamics: 7 = I/e2 which

describes the radial relaxation in the X- Yphase space,
T=1/A which is the linear period of rotation, and r,
which is the correlation time of the noise. Hence„ the
system's properties can be unfolded in terms of two

dimensionless parameters:

+ —( T/r )1/2 e/A 1/2

I/q=—(T/7 )»'=y'/'/(A'/ K)

We replace 8 by 8(z, ) = (8) +p q t'z, in Eqs. (1)
and (2) (a and P are exponents to be fixed later ac-
cording to the situation investigated), set 7 = At, and
introduce polar coordinates through the transforma-
tion

X = A + p, A'/2u' COSH,

I =A-'+A+ Jp, '+ pA' 'u' '(slnH-cosH).

The Fokker-Planck equation (FPE) corresponding to
the SDE's for u, H, and z resulting from these transfor-
mations and giving the evolution of the joint probabili-

ty density p(u, H, z) reads

[p(u, Hz) ] 't),p(u, H, z) = —t)„I/4, [2(A 3/2 —Al/2) c3u3/2+4A»2c2su3/2]

+2p2(czlu —c u2+A 'c3su )+2p, (A '/ Ic3u3/ )

—2A ' 'p, 'q /'z(cu' '+A-'/'p, c'u) ]

( I +p[(A1/2 A
—3 2) c2sul/2 2A

—1 2cs2ul 2]

+t 2(c3su csi A—1 c'-s'u)— »(A -»2czs~u-'/2)

+A '
p, 'q ~z(su '/2+@A ' cs) I+q 2(a,z+O' B,z); (3)

c = cosH and s = sinH. We are interested in the station-
ary solution p, (u, H, z) of (3). Since 8 is close to 8„
we admit that the inequalities p, « 1 and p. « I/q
which express the slowing down of the radial relaxa-
tion are fulfilled. The objective is then to determine
the position of the bifurcation point for the two cases
where the phase is either faster or slower than the
noise. We take the bifurcation of the extremum of the
reduced stationary probability density

p2%
p'(u) =„J dz dH p, (u, H, z)

as indicator of the transition.
(1) q &( I or, equivalently, T= A

'K . The phase evolves more rapidly than the
noise. It is appropriate —to modulate the intensity of
the noise in (3) by putting ~=1 and P =0. Indeed,

from the correlation function (z,zp) = (o /2)
xexp( —~7 ~/q2) we note that q2 is nothing else than
the correlation time of the noise when the unit of time
is chosen equal to the rotation period. Hence, in the
limit q

2 0, which is of interest here, the evolution
of H is completely correlated to that of z: The spectral
density S(v) of z, converges to a 5 peak located at
the frequenCy v =0, i.e. , lim 2 pS(v) = (o2/2)5(v).
This is exactly what one expects to happen when the
evolution of H is so fast that at every instant the value
of this variable is able to "equilibrate" to the fluctua-
tions of the noise (for more details see Arnold,
Horsthemke, and Lefever, '8 and Ref. 1, p. 226). By
use of this scaling and choice of A so that the
mathematical condition r, (( A ' 2 (A « 1) is sat-
isfied, the stationary probability density p, (u, H, z) can
be expanded as

pg(u, H, z) = pp(u, H, z) +g 'p2(u, H, z) +q 'p4(u, H, z) +. . . .

Replacing in (3), one easily finds that pp(u, H, z) = @(u,z)/2m, where $(u, z) is the solution of

[i)„[u2(Iu —3u'/4) —pA 'zu] —(B,z o+. B,z) ]@(u,z) =0.

Expanding now @(u,z) as

p(u, z) =@p(u,z)+p, pl(uz)+p, 2&2(uz). . . ,
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one finds that $0(u, z) =p, (z)p (u), where p, (z) is
the stationary solution of the FPE for the Ornstein-
Uhlenbeck process and p'(u) is the solution of

[ —o23 'B„ur)„u+r)„(lu —3u'/4)]p (u) =0.
This equation is familiar: By a simple redefinition of
its parameters it transforms into the steady-state
version of the FPE associated with the well-known
Verhulst SDE: dx, = A.x —x2+ o-x dW, . The latter is,
with the Landau equation, a standard paradigm for the
study of noise-induced shifts. Indeed for both sys-
tems, the stationary probability density of x undergoes
an abrupt transition at A. = tr2/2: The extremum which
for A. ( o.2/2 is at x = 0 switches abruptly to a nonzero
value of x for X & o.2/2. For the Hopf bifurcation con-
sidered here, this behavior corresponds to a postpone-
ment of the oscillatory regime (limit cycle) towards a
higher value of the control parameter (B). This is in
agreement with the result obtained by the addition of
Gaussian white noise to the bifurcation parameter in
the normal-form equation (cf. above). In this shortcut
procedure, however, the condition that the phase must
be much more rapid than the noise is only implicit.

That it is essential can be seen from the case con-
sidered now.

(2) p, (( 1 (( q '. The phase evolves more slowly
than the noise. —The noise being now the fastest pro-
cess in the system, we modulate its intensity in (3) so
that for q ~, the white-noise limit is recovered.
This requires that P= l. Indeed, it is easy to verify
that when q 0, the correlation function of z,/g, i.e.,

((z,/q) (zo/n) ) = (~'/2q') exp( —lr I/q'),

becomes 8 correlated and that the corresponding spec-
tral density, i.e., S(v) = o. /[2m(714v2+ 1)], converges
for all frequencies v towards the constant value o. /2vr;
in other words, the power spectrum becomes white.
Furthermore, we shall investigate the system's
behavior in the weak-noise limit obtained by our put-
ting n = 2. The stationary solution of (3) can then be
expanded in powers of q At .the lowest order one
finds that po(u, 8,z) =p, (z)p, (u, H). Indeed, in the
limit q 0, the noise becomes 8 correlated. ' The
joint probability density p, (u, 0) is the stationary solu-
tion of the FPE (without loss of generality we may
take here that & = 1):

[p, (u, 8) ] ' B,p, (u, 8) = p, [4c's B„u' ' —8,( 2cs'u' ') ]

+ @2{c2[(l„(2Iu+ o. ) —2o28„„u]—2c B„u +2c s B„u + o s 8„

+8~[cs(o. u ' —I+2o 6„)+c su —c s u —1)e(o. s u '/2)] }

+ {c 6(2Iu +3 —4 6 )+3o cs t)u

+ (jg[c2s (3o2u 't'/2 —Iu't + 4o2 g„u 't') —o 2s'u ' 2/2 —o.' B,(cs'u ' ') ] )

+ p'o. '{2(c,"e„u —rl„„u'+ c's'll„u )+Bg[c's ( —,
' + 2 e„u ) —cs'/2 Bg(c'—5'/2) ] }.

Expanding p, (u, 8) as

pg(u, 8) = po(u, e) +p p](u, 6) + p, p2(u, e) +. . . ,

one finds that up to the order p,
2

p, (u, &) = (&/2~) {1—p, [c'(4u' '/3)8„+2cu' ']

+ p. [C+ 65u3/(576o. ) —Iu2/(4o ) —25u/48+ c6(8u /9) 8

+ c'(25uz/6)t)„+3c2u —c3s(u2/2)8„+ cs(o 8„—I) l)exp[(Iu —3u /8)/ '],
where W is a normalization constant and C is a con-
stant to be determined from the normalization condi-
tion f f dudHp2(u, 9)=0. For 2'« I, one has
C = 4)/343o + —,", . Calculating the reduced probabil-
ity density p'(u) for the action variable u, one easily
finds from the extremal condition B„p"(u) = 0 that the
extremum u which corresponds to the amplitude of
the limit cycle is now located at

u~ =
3 +p, ( Si +470 /36).

Clearly the amplitude of the limit cycle as given by u

is larger in the presence of noise than without. This
shows that in contrast with case (1), the bifurcation
point is advanced compared to its position under deter-
ml nlstlc cond1t1ons.

These results show that the response to rnultiplica-
tive noise of systems undergoing a pitchfork bifurca-
tion, like, e.g. , the chemical oscillator considered here,
the single-mode laser near threshold, the Couette and
Benard instabilities, or various electrical circuits, is not
as universal as the studies based on reduced dynamical
descriptions predict. %hether or not, in a given sys-
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tern, the noise postpones such a bifurcation depends
not only on the coupling of the noise with the slow
mode(s), but also, and in an essential manner, on its
coupling with the fast variables. The outcome of the
latter effect, especially when the noise is the fastest
process in the system as under the conditions of case
(2) above, can in general not be accounted for by the
dynamics valid locally near a bifurcation point. The
interplay between the noise and dynamical features
specific to each model system in particular becomes
essential.
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