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Inequality for the Infinite-Cluster Density in Bernoulli Percolation
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Under a certain assumption (which is satisfied whenever there is a dense infinite cluster in the

half-space), we prove a differential inequality for the infinite-cluster density, P (p), in Bernoulli
percolation. The principal implication of this result is that if P (p) vanishes with critical exponent

p, then p obeys the mean-field bound p» l. As a corollary, we also derive an inequality relating

the backbone density, the truncated susceptibility, and the infinite-cluster density.

PACS numbers: 02,50.+s, 05.50.+q, 64.60.Fr

The percolation model was introduced in 1957 by
Broadbent and Hammersley' to describe the diffusion
of fluid through a porous medium. Because of its sim-
plicity and its often surprising applicability, percolation
has become one of the most widely studied and best
understood models in statistical physics. Although the
theoretical framework of percolation is by now well es-
tablished, 2 many questions in the rigorous analysis of
percolation theory remain open. 3 The purpose of this
Letter is to address one of these questions.

The Bernoulli site-percolation model is defined as
follows4: Each site of Zd is taken to be occupied with
an independent, homogeneous probability p, and va-
cant with probability 1 —p. Perhaps the most funda-
mental quantity in percolation theory is the infinite-
cluster density, P (p), which is the probability that a
given site (say, the origin) is in an infinite cluster of
occupied sites. The infinite-cluster density is the con-
ventional order parameter for percolation; hence, the
percolation threshold, p„ is define to be the smallest
value of p above which P & 0.

It is generally accepted that P (p) exhibits scaling
behavior as p p, +:

P (p) —lp —p, l'.

The only lattice for which such behavior is rigorously
known to occur is the Cayley tree, on which one finds
a relation of the form (1) with p = 1. It should be not-
ed that the tree value p = 1 distinguishes the mean-
field behavior of percolation from that of the Gaussian
(or Ising-type) models. s

It is expected that the bound saturates for d ~ d, = 6.
Our result complements much recent work~s on the
rigorous analysis of critical exponents for percolation
theory.

The basis of our mean-field bound is a new differen-
tial inequality for the infinite-cluster density:

P ~ —1P2 +PP d(pP ) dP
(3)

We prove (3) under a relatively weak assumption (ex-
plained below) that is known to hold for all p in d = 2
and expected to hold for all p in all dimensions. The
proof of (3) is surprisingly easy; indeed, after prelimi-
nary definitions and review of some results in rigorous
percolation theory, the essentials of the proof are but a
few lines and will be presented in this Letter. First,
however, let us show that (3) implies the asserted
mean-field bound.

Take p & p„which implies P (p) & 0, and in-
tegrate (3) from p, to p. With the fact that p & p, and
expansion of the resulting expression, this gives

(p) —P (p, ) —ll —p, 'P (p, ) l(p —p, )

+ o((p -p, )'), (4)

In this Letter, we prove that under a certain assump-
tion there is a lower bound of the form (1) with p = 1 in
all dimensions. We thus derive the mean-field bound
for the infinite-cluster density exponent:

(2)
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which implies that P (p) does not tend to its limiting
value slower than linearly. Indeed, assuming that

(p, ) =0 (which is rigorously known9 in d =2 and
expected in all d), (4) reduces to

P„(p) ~ (p —p, ) +O((p —p, )').
Thus if P (p) has scaling behavior as in (1), the ex-
ponent P obeys the mean-field bound P ~ l.

Most of the rest of this Letter is devoted to the
proof of the differential inequality (3). However, at
the end of the Letter, we will also show that reasoning
along the lines of this proof can be used to derive a
new inequality relating the so-called "backbone" den-
sity, the truncated susceptibility, and the infinite-
cluster density.

Definitions and statement of the hypothesis. —Our ine-
quality is derived by our viewing an infinite cluster as
being composed of a "backbone" and "dangling
ends. " The backbone of an infinite cluster has been
described in various contexts as the part of the infinite
cluster which carries current. Thus, in the infinite-
volume limit, a natural definition is that a site is in the
backbone if it is occupied and attached to two disjoint
infinite paths of occupied sites. We define the back-
bone density, g (p), to be the probability that any
given site (say, the origin) is in the backbone. For
convenience, we also define P (s) and Q (s) to be
the events that the site s is part of an infinite cluster or
part of a backbone, respectively, so that P (p)
= Prob[P (0) ] and Q (p) =Prob[Q (0) ].

It is possible to envisage infinite clusters with no
backbone. %e will call these "spineless infinite clus-
ter, " and define S (p) to be the event that the origin
is part of a spineless infinite cluster. Note that
S (p) = 0 trivially for p & p, . Although it is intuitive-
ly obvious that spineless infinite clusters should, with
probability 1, also not appear when p ~p„ this result
can only be rigorously demonstrated in d = 2, where it
follows from the work of Harris. '0 For p above thresh-
old in d ~ 3, a proof that S (p) =0 requires certain
additional assumptions, the weakest of which (at
present) is that one can find a dense infinite cluster in
the half-space.

The hypothesis under which we prove our inequality
(3) is that S (p) =0. If this is the case, then whenev-
er the origin is in an infinite cluster, it is (with proba-
bility 1) either part of a backbone or part of a dangling
end. The latter event is then simply P (0)(Q (0),
where the backslash denotes deletion. Thus,

P„(p)= 0„(p)+ Prob [P„(0)EQ„(0)l.

The point of our proof is to bound both terms on the
right-hand side of (6) by functions of the infinite-
cluster density. For this we need thc following.

Some results of rigorous percolation theory. First, we-
define positive and negative events. Let ~ be a config-

uration of occupied and vacant sites. An event A is

said to be positive if it is the case that whenever A oc-
curs in a given configuration co, it also occurs in all

configurations ao' with the property that each site
which is occupied in ~ is also occupied in ~'. Negative
events are defined analogously with "occupied" re-
placed by "vacant. " Note that the events P (0) and

Q (0) are both positive, while the event that the ori-
gin is in a dangling end is neither positive nor nega-
tive.

Next, we define the notion of articulation sites. A

site s is said to be an articulation site for an event A if
alteration of the configuration at the site s changes the
status of the event A. We denote by S,A the event
that s is an articulation site for the event A. Note that

Q (0) is precisely the event that P (0) occurs and
that there are no articulation sites (other than the ori-
gin) for P (0). Articulation sites are useful in the
context of the following formula, derived by Russo9:
If A is a local positive event, then

d (Prob [A ] )/dp = X, Prob[5, A ]. (7)

Furthermore (7) also applies to certain nonlocal posi-
tive events, including the event P (0) (see, e.g.,
Durrett" ). Notice that the right-hand side of (7) is
just the expected number of articulation sites for the
event A. Special cases of this formula have also ap-
peared in the work of Coniglio. '2

Finally, we describe the notion of events which occur
disjointly Let U. &Z and let A be an event. Then A ~U

is notation for the event that A occurs and cannot be
destroyed by altering any sites in the complement of
U; for obvious reasons, we say that A ~U is the event
that "A occurs on the set U." Two events A and 8 are
said to occur disjointly, denoted by A 8, if there are
disjoint sets, U, V L Z", U p V = $, such that both
A

~ U and 8
~
y occur. For the case in which both A and

8 are positive events, van den Berg and Kesten have
proved the inequality

Prob[A 8]~ Prob[A]Prob[8]. (8)

With use of (8), it is not hard to derive that

g (p) ~ p 'P„' (p),

which itself has some interesting consequences for the
random-resistor-network model. ' Indeed, (9) follows
simply from (8) and the observation that Q (0) is the
disjoint occurrence of the event P (0) and the event
that a neighbor of the origin is part of an infinite clus-
ter.

A recent improvement of (8), due to van den Berg
and Fiebig, ' extends the inequality to the case in
which A and 8 are (each) intersections of a positive
and a negative event. ' This extension considerably
simplifies our derivation of (3).

Proof of the differential inequality 0).—We begin
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FIG. 1. The event 5,P (0). FIG. 2. The event D, (0).

with the identity (6). By (9), we see that we already
have (the easy) half of the proof. Thus, it suf-
fices to estimate the "dangling end" term
Prob[P (0)(Q (0) ]. To this end, consider the event
5,P (0). By definition, whenever 5,P (0) occurs
and s is occupied, removal of s disconnects the origin
from infinity. Dually, this means that, if s is vacant,
there is a "cutting surface" (of vacant sites) surround-
ing the origin and passing through s, and that 0II cut-
ting surfaces surrounding the origin pass through s.
(That is, the "other side" of s is connected to infini-
ty. ) This may be expressed graphically as in Fig. 1. It
is evident that 5,P (0) is the intersection of a nega-
tive and a positive event.

Now, let us discuss the dangling-end event
P (0))Q (0). If this occurs, and S (p) = 0, we
claim that there is a unique site s CZ which is (i) part
of the backbone of the infinite cluster, and (ii) an
articulation site for the event P (0). To see this, one
first needs the easily derivable fact that if s' and s" are
both part of the backbone of an infinite cluster
(s'As"), then there are two mutually disjoint infinite
paths of occupied sites, one containing s' and the other
containing s". Now denote by CnE(0) the set of occu-
pied sites in the dangling end of the origin [i.e.,
CoE(0) contains those sites connected to the origin by
a path of occupied sites, none of which are in the back-
bone]. Clearly, there is at least one site s in the back-
bone with a neighbor in CoE(0). To show that s is
unique, one simply assumes fhe opposite and uses the
above (easily derivable) fact to show that this implies
the existence of an x E CoE(0) which is also in the
backbone —a contradiction. That this unique s in the
backbone is also an articulation site for P (0) follows
from a similar line of reasoning.

Let us partition the event that the origin is in a dan-
gling end according to which site s satisfies (i) and (ii)
above. This gives

from which it is obvious that

D, (0) = 5,P„(0) P„(s).
Now, using the inequality (8) (as extended by van den
Berg and Fiebig' ) and the Russo9 formula (7), we
have

Prob [P (0)(Q (0) ] ~ & (p) d [+ (p) ]/dp, (12)

which completes the proof of (3).
An inequality for the backbone density Reas.o—ning

analogous to the preceding proof also shows that
Prob[D, (0)] is bounded above by 0 (p)v,'a„where
r,'a, is the probability that origin and a neighbor of s
are in the same finite cluster. Summing over s, one
obtains

P„(p) -0„(p)[I+2d&'(p)],
where 2d is the coordination number of the lattice, and
X'(p) is the expected size of finite clusters, also identi-
fied as the (truncated) susceptibility. Assuming (1)
an«hat g (p)-lp p, l', )~'(p)-lp--p, l~', w.
have

(14)

which supplements the lower bound" q «2P, deriva-
tive from (9). It is worth noting that these upper and
lower bounds agree in mean field.
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P„(0)iQ„(0)= U, D, (0), (10)

where D, (0) is the event that s satisfies (i) and (ii).
Graphically, D, (0) may be represented as in Fig. 2,
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