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Ordered Phase of Short-Range Ising Spin-Glasses
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%c propose a new picture of the Ising-spin-glass phase, based on an Ansatz for thc scaling of
low-lying large-scale-droplet cxcitations. %e find behavior very different from thc infinite-range
model. The truncated spatial correlations decay as a power of distance, the ac nonlinear susceptibil-
ity diverges as a power of tn~, and the magnetization noise power diverges as 1/ru with logarithmic
corrections. A magnetic f ield destroys the spin-glass phase so that there is no de
Almeida-Thouless transition. Defect excitations should yield similar dynamic phenomena in vec-
tor spin-glasses.

PACS numbers: 75.40.Dy, '75. 10.Hk

There has recently been considerable progress in
understanding the static and dynamic properties of the
ordered phase of the infinite-range Ising spin-glass
[the Sherrington-Kirkpatrick (SK) model). '2 Howev-
er, there has been very little success either in extend-
ing the SK results away from the infinite-range limit or
in directly attacking the short-range models of interest
for any spatial dimensionality, d Computer simula-
tions3 and numerical approximate renormalization cal-
culations on the d=3 Edwards-Anderson (EA) mod-
el do indicate, however, a finite-temperature ordering
transition.

In this paper we propose a new picture of the or-
dered spin-glass phase in short-range systems and dis-
cuss static and dynamic properties based on a simple
scaling Ansarzmotivated by the results of the numeri-
cal "domain-wall" renormalization-group studies of
Bray and Moore, and McMillan. 4 We assume that
there is an ordered phase with nonzero EA order
parameter5 q«= ((S,) 2), for temperatures T & T,.
The brackets (. . .), denote the configurational aver-
age and the brackets (. . .), an infinite-time average in
the phase of interest. 5

The low-lying excitations which dominate the long-
distance and long-time correlations in the Ising-spin-
glass phase are clusters or droplets of coherently
flipped spins (see below). Our basic assumption is that
the density of states at zero energy for such droplets at
length scale L scales as L s, with 0 & 8~(d —1)/2.
At large L the thermally excited droplets are therefore
dilute and may be treated as noninteracting two-level
systems. With the further assumption that the ac-
tivation barriers scale as L~, we show that the auto-
correlation function

C(i) = ((S,(0)S,(r) ),—(S,),'), (1)

decays as (lnr) s~~ for r ~. This results in 1/f
noise for the magnetization, as has been observed in
some insulating spin-glasses. We also find that the
EA correlation function fails off at long distances as
r s and that the ac nonlinear susceptibility diverges as
a power of inca as frequency ~ 0.

The picture of the ordered phase which emerges is
in striking contrast to that of the SK model. From a
renormalization-group point of view, the results that
we obtain are consequences of static and dynamic scal-
ing which arise from the approach to a disordered
zero-temperature fixed point with eigenvalue —8.
The scaling behavior is quite analogous to that at the
random-field Ising critical point analyzed recently. 9

We first consider the T =0 behavior of the S;= +1
Ising spin-glass with a continuous distribution of ex-
changes I JJ ). In a ferromagnet or in the unfrustrated
Mattis model'o of a spin-glass, the stiffness of the or-
dered phase (or ground state) can be obtained by mea-
surement of the average difference in energy for sys-
tems of linear dimensions L between periodic and an-
tiperiodic boundary conditions in one of the directions.
This domain-wall energy is aL" ' with o the interfa-
cial tension. In a true spin-glass, because of the frus-
tration present on all length scales and the resultant in-
determinacy in which boundary conditions are more
favorable, the situation is quite different. The authors
of Ref. 4 have calculated the difference in ground-
state energies for samples of Ising spin-glass of size Ld
between periodic and antiperiodic boundary condi-
tions. The higher-energy configuration can be thought
of as an imposed domain wall on one side of which the
spins are reversed from the other lower-energy state.
It is natural to expect that for large L, the characteris-
tic magnitude of the energy difference is YLs, with
8 & d —1 and Y the appropriate generalization of the
twist modulus or interfacial tension. The results4 are
consistent with this form with 8 =0.2 for d =3.
(When 8 & 0 the spin-glass phase does not exist for
T )0; this appears to occur for d =2. ) The distribu-
tion of domain-wall energies is found to be broad with
weight at zero. 4 This should be expected for a frustrat-
ed spin-glass since, as argued below, the domain-wall
energy is subadditive.

For a symmetric distribution of exchanges the pairs
of samples of size L~ which differ only in having
periodic and antiperiodic boundary conditions are
drawn from an ensemble with bonds differing only
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along one surface of area L~ '. lf the dependence of
the ground-state energy on the exchanges had only
short-range correlations, the rms energy variations
within this ensemble would scale as Li" "t, yielding
8 ~ (d —1)/2. Although there are, in fact, long-rarige
correlations in the effects of altered bonds, an argu-
ment to be presented elsewhere shows that this naive
bound for 8 is nevertheless correct.

We hypothesize the following picture for the low-

lying excitations from a ground state. By definition
the energy of such a state cannot be lowered by the
flipping of any jtnite collection of spins. We expect
domain-wall or droplet excitations on a scale L which
consist of closed surfaces surrounding of order L
spins flipped from the ground state. We consider only
the lowest-energy such droplet in each region of
volume L~ The boundaries of these low-energy drop-
lets are presumably fractal with a surface area of order
L ' with d —1 ~d, ~d but for 8&0 the droplets
should be compact, with d, & d We first make a sim-
ple model for the statistics of these droplets which, as
we will later argue, should correctly yield the essential
features at long distances and times for all T & T, after
appropriate coarse graining has been performed to take
into account interactions between droplets. For T & 0
we must consider free energies instead of energies.

Consider an ensemble of independent (but overlap-
ping) droplets. At each size L~ they are, from the de-
finition above, distributed with spatial density
SL/L'~+'i for droplets of size between L~ and
(L +SL )~ Thus each spin is, on average, in of order
one droplet of size between L"and (2L) ~ Motivated
by the results of Ref. 4 we take the probability distri-
bution for the excitation free energies Ft of droplets
on scale L to have the scaling form

PL(FL) =p(FL/YL )/YL

for large L, with p(0) & 0.
The behavior of the ordered phase is dominated by

the thermally active droplets: those with free energy
less than or of order of T. As long as 8 is positive only
a fraction of order T/YL~ of the droplets are active for
L large, and only a fraction of order Tof the spina lie
in active droplets. Thus there is a linear low- Tspecific
heat and the static susceptibility is nonzero even at
T=0. These are simply consequences of a nonzero
density of states of two-level systems at zero energy
and are dominated by the small active droplets. The
long-distance behavior of the correlation function,
C» = (SfS~), (S~),(St)„on th—e other hand, is dom-
in»ated by the large droplets. For spin separation ( i —j(

large the dominant contributions to Ctt come from
droplets which include both i and j." These give rise
to exponentially smail correlations unless a droplet
containing both sites is active in which case C» has
magnitude of order q Ez. Averaging thus yields

(C(g), —qE„T/(Yl i —jl ). The slow falloff for d =3
may explain why the system appears critical for
T & T~.

The nonlinear effects of a weak magnetic field H can
be considered by a generahzation of the Imry-Ma'2 ar-
gument. A droplet has magnetization of order L~~ so
that any field aligns the large droplets since 8 & d/2.
This implies that the long-range order is destroyed by
nonzero uniform (or random) field. '3 The magnetiza-
tion, m, induced by a small field has a singular part'4
which scales as m —H+t~ 2~i since droplets of scale
L pH it~ z~i independently align with the field.
For 0 & T & T„ the EA susceptibility, XEA = X» (C»),
diverges (since 8&d). The nonlinear susceptibility
X„~=8 m/rjH diverges less strongly because of can-
cellations: Its divergence is related to the deviation of
p(e) from p(0) for small a. If p(a) —p(0) —a~ then
X„~ is infinite if d & (I +$)8, which is likely to be the
case for d =3.

We now turn to the low-frequency dynamics of the
spin-glass phase, which, as for disordered ferromag-
nets, '5 is dominated by large-droplet excitations. In
order to proceed, we need to know the time scales of
the droplet fluctuations. To form (grow) a droplet of
scale L, it is necessary to go over a free-energy barrier,
8, which is typically larger than the excitation free en-
ergy of the completed droplet since the domain wall
must pass through regions of high free-energy cost
while the droplet grows. We make the natural conjec-
ture that the typical bamer scales as 8=4L~ with
8 ~p~d —1. A droplet with barrier 8 lasts for a
time t of order toe, where to is a microscopic time.
As long as the distribution of 8 is well behaved (i.e.,
without a long power-law tail), we can obtain the
correct long-time form of dynamic correlation func-
tions by considering only typical barriers.

The autocorrelation function, C( t), Eq. (1), is dom-
inated at long times by the active droplets with barriers
of order T ln( t/to). It follows that

pj's

C(t)— (3)
T ln( t/to)

t i

i.e., there is an extremely slow logarithmic decay of
temporal correlations. The magnetization correlations
decay in the same way as long as there is only short-
range ferromagnetic or antiferromagnetic order. The
frequency-dependent magnetization noise spectrum is
therefore C (e)) —I/re I lnco I

t'+a«~, yielding 1/j' noise
up to 1ogariOunic corrections, in agreement with recent
memuremeuts. s The imaginary of the ac suscepti-
bility m X"(~)-li ~[-"+'«, ~d the rm p t
scales as X(0) —X'(co) —)Ine)( «. An ac nonlinear
susceptibility is the cubic 3m response of the magneti-
zation to a field with frequency a), which scales as
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and thus diverges for co 0 when d & (1 +qh) 8.
Having stated the main predictions in terms of

noninteracting droplets, we now discuss the justifica-
tion for applying the results to short-range spin-glasses
at all temperatures where there is a nonzero qEA. It is
apparent that it is only the active droplets at any given
temperature which play an important role, so that we
must define these droplets and analyze the effects of
interaction with other droplets on their behavior. For-
tunately, as long as the spin-glass ordered fixed point
is stable so that 8 & 0, the density of large active drop-
lets is small. Consider a large droplet, D, of scale L.
For T &0, we coarse grain to a scale I « L taking
into account all fluctuating droplets on scales smaller
than I which affect the free energy, FD, of D. This
process produces contributions to FD from fluctuations
near the boundary of D which should scale as L '4/2

(the square root of its area) and are thus likely to be
larger than FD —YLs. Thus we must minimize the
position and shape of the droplet afkr coarse graining
to the scale I This implies that which large droplets
are active varies substantially with temperature since
8 & d, /2, because the droplet free energy YLs is a near
cancellation of much larger energy and entropy
terms. ' More importantly, it also implies that the re-
lative sign of spins septtrated by su~iently long distances
changes randomly with any change in temperature be-
cause the minimum-free-energy orientation of large
droplets varies. However, at a fixed T, it is only impor-
tant that the large active droplets are well defined;
surprisingly in light of the above, this appears to be the
case.

We estimate the contribution to the entropy of D
from interaction with droplets (i.e., deformations) of
scales between I and L This is bounded by (L/I)~
times the entropy of conflgurational changes on scale
l~ in a region of size of order l~, which is on average
T/Yls. Thus as long as (L/I) ~T/Yls && 1, FD is not
appreciably affected by this entropy and the droplet
wall, when it is there, spends most of its time in the
configuration obtained by minimization of the free en-
ergy coarse grained at scale I This condition is satis-
fied with high probability for large L provided that
I —L with d/(d +8) & x (1. Thus on a scale IIL)
active droplets of scale L are well-defined excitations
which, if the scaling Ansatr for the ground-state excita-
tions are correct, have a density of order T/YL s.

The coefficients Y and 6, for the droplet and barrier
energies are of course temperature dependent. They
are of order (( J)J2,)' I2for T &( T, and by scaling
vanish for T T, as g sand g ~, respectively, where
g is the correlation length which diverges at T,.

Our predictions for the behavior of the short-range
Ising spin-glass are in striking contrast to those for the
SK model. Most significantly we find that autocorrela-
tions decay as universal powers of lnt, while in the SK

model they decay as nonuniversal powers of time. 2

Both systems share the feature, however, of a diver-
gent EA susceptibility in the spin-glass phase. In a
magnetic field the SK model still has a phase transition
(the de Almeida-Thouless line), " while there is no
such transition in the short-range system. Several au-
thors have attempted to extract the low-temperature
behavior of short-range spin-glasses by expanding
about the Parisi solution of the SK model. 'I If our pic-
ture is correct, this approach must fail. With regard to
the distribution P(q) of overlaps between states, ' for a
finite large system of size L~, P(q) has weight away

from the peaks (e.g. , at q = 0) of order T/YqEALs [for
T near T„P(q = 0) increases for L & g before begin-
ning to decay]. However, in the thermodynamic limit
P (0) vanishes for short-range spin-glasses with 8 )0,
in contrast to the Parisi solution for the SK model. "9
In addition, the hierarchy of states and the much tout-
ed ultrametricity found in the SK model' does not ex-
ist here: Each spin is likely to be in either one or,
more often, no larger active droplet. In the presence
of random power-law interactions with (JJ2),—)i —j (

2 a simple argument shows that the
present picture is not altered provided that o. & d —8.
Thus it should hold for Ruderman-Kittel-Kasuya-
Yosida interactions (a =3) in d=3. For d/2 & o.
«d —8, where 8 is the exponent with only short-

range interactior, s, the exponent is likely to be
8 =d —cr Thus. it appears that the ordered phase of
any physically reasonable spin-glass is qualitatively dif-
ferent from that of the SK model.

So far, we have only discussed fluctuations in equi-
librium, which is, of course, extremely difficult to at-

tain below T,. The results should apply, however, for
nonequilibrium states which have relaxed for a time 7

provided that the time scale of the measurement is
(& r This is. consistent with the behavior of the

magnetization noise found in Ref. 8.
Finally, we note that many of the ideas presented

here should apply to vector spin-glasses. As discussed
by Henley, 2a vector spin-glasses have droplet defects,
involving improper rotations as well as other defects
that involve only proper rotations. These should have
barriers and low-energy densities of states varying as
powers of their length scale, just as for Ising spin-
glasses, and will thus dominate the long-time dynam-

ics, since gapless excitations yield correlations decay-
ing as powers of time. ' For vector spin-glasses the
stiffness to improper rotations might scale with a larger
exponent 8; than that for proper rotations, 8~. For a
d =3 nearest-neighbor Heisenberg spin-glass a prelim-
inary calculation indicates 8; &0 and thus no spin-
glass phase. However, for power-law interactions with
o. «d —8; it appears that 8;= 8~ = d —o. Thus-
Ruderman-Kittel-Kasuya- Yosida interactions in d =3
may well be marginal. Viiiain23 has pointed out that
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vector spin-glasses have Ising-type multispin local

operators that are invariant under proper rotations, but
change sign under improper rotations. He suggests
that these Ising-type operators order for any 1where
the Ising spin-glass orders; however, the effective in-

teractions between these operators are not entirely ran-

dom and are of very long range, ' which raises doubts
about this suggestion.

In conclusion, we have introduced a new consistent
picture of the ordered phase of short-range Ising spin-

glasses based on a numerically supported4 scaling An

satz. The static and dynamic correlation functions at
long distances and long times are dominated by low-

energy large-droplet excitations. Qur picture of the or-
dered phase is very different from that of the SK
model and we hope that it will serve as a basis for fu-

ture investigations of short-range spin-glasses.
We thank R. N. Bhatt, C. L. Henley, P. C. Hohen-

berg, A. T. Qgielski, and H. Sompolinsky for useful
discussions.

Noted added. —After this paper was submitted, a pre-
print was received from A. Bovier and J. Frohlich
which independently suggests the existence of low-

energy excitations which lead to power-law decay of
the truncated correlations.
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