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%e present theorems on the possible sizes of ultrametric and almost-ultrametric structures and
discuss implications for the entropy of spin-glasses, the traveling salesman problem, and neural
network memories.
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It has proved fruitful to the understanding of spin-
glasses to study the free-energy landscape. A decade
of research has indicated' ' that the glassy phase is
characterized by a large number of deep free-energy
valleys. In the thermodynamic limit, that is, the limit
as the number of spins N is taken to infinity, there are
believed to be infinitely many valleys, called equilibri-
um states, separated by infinite free-energy barriers.
Remarkably, it has recently been sho~n that these
equilibrium states are organized in a hierarchy charac-
terized by an ultrametric structure. More precisely, if
a natural definition of distance between equilibrium
states is introduced, then any triangle formed by three
equilibrium states is either equilateral or isosceles with
the third edge shortest.

Ultrametricity is a very strong constraint. If k
points, say in R, are to be chosen to be ultrametric,
then the (3) possible triangles must have this special
form. We have studied the consequences of this con-
straint. We find, for example, that no ultrametric set
of spin-glass configurations on N sites contains more
than N+1 configurations. Since the theorems of
Refs. 3 and 4 in fact only show that in the N ~ lim-
it almost every triangle satisfies the constraint, we
have also investigated this case. Given a reasonable
assumption on the number of triangles violating ul-
trametricity, we have proved a polynomial bound on
the size of any almost-ultrametric set.

A polynomial bound on the number of equilibrium
states ~ould be extremely interesting since it would
immediately imply that the zero-temperature entropy
of the spin-glass is 0. Our results strongly suggest that
this is so. We have not been able rigorously to prove
this because we lack sufficient control on the f'mite-N
effects.

Our results have other interesting applications as
well. The traveling salesman problem (TSP) and other
combinatorial optimization problems have been stud-
ied as spin-glasses. The TSP is the problem of finding
the shortest tour visiting each of n cities once, given a
matrix of distances between them. In the TSP a tour

is said to be A. -opt if it cannot be shortened by inter-
change of A. links. 6 Evidence has been presented' that
the 2-opt tours and the 3-opt tours are ultrametrically
organized. Again a polynomial bound would be in-
teresting as it is generally believed that there are ex-
ponentially many 2-opt tours.

In 1982 Hopfield8 proposed a '"neural network'"
model in which, by a sculpting of the energy landscape
of spin-glasses, it is possible to store content-
addressable memories. Recently, Parga and Virasoro9
have proposed a model to use the natural ultrametric
structure of spin-glasses for hierarchical memory
storage. The question of capacity, which is not ad-
dressed in Ref. 9, is generally considered crucial in
memory models.

With these motivations we have studied embeddings
of ultrametric structures in larger metric spaces and
found bounds on their size, and also embedding algo-
rithms in several cases. We present our methods more
fully elsewhere'; here we will state some results and
stress the physical consequences.

Definition I.—An ultrametric space is a metric space
(X,d) which satisfies

d(xz) ~ max[d(xy), d(y, z) l.
Equivalently every triangle (x,y, z ) is isosceles with

the third side shorter than or equal to the other two.
In Ref. 4, for instance, it is shown that the canonical
example of such a space is a branching tree, as in Fig.
1, where the points of the space are nodes at the bot-
tom of the tree, and the distance between any two
points is the height that one must ascend up the tree in
order to reach a common predecessor.

Let (E,d) be a metric space. Let XCE such that
with the induced metric, X is ultrarnetric. %e ask,
what is the maximal size of X~ We have studied this
problem for (a) subsets (3, ), i =1, . . . , k, of an N-
set with metric

d(W, ,W, ) =max(la, l, la, l) —la, ga, l;

(b) N-dimensional hypercube, i.e. , (O, l) or (1,—1)
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FIG. I. Typical tree. The points of the space are the bot-
tom nodes labeled a-f. For example d (a,b ) = 2,
d (c,e ) = 8, d(d f) =6.

vectors of length N with the Hamimng distance dH,
.

and (c) R with the Euclidian distance dE.
Theorem 1:In (a), (b), and (c), )X)»N+1. More-

over this bound can be attained.
In Ref. 10 we prove this theorem. Here we sketch

the proof in case (b). The other cases are similar.
Consider a maximal set Xi, . . . , Xk of (1, —1) vec-

tors in R having an ultrametric structure for the
Hamming distance dH. Form the k XN matrix having

XJ for its jth row. Let 8 he the k xk matrix
8 = AA '= (bJ) Obvio. usly rank8» N. Moreover
b&

——N 2dH(X. ,X—J ). A careful study of 8 shows that
ran&8 «k —1. Therefore k»N+1.

The upper bound is obtained by the following con-
struction:

Xi = —1, 1, 1, 1, . . . , 1,

X2 = 1, —1, 1, 1, 1„ . . . , 1,

X~= 1, 1, . . . , 1, —1,

X~~i = —1, —1, —I, . . . , —1.

One might conjecture that for trees with a rich
branching structure this bound could be lowered signi-
ficantly. Yet in Ref. 10 we show a construction of
trees with constant arity (branching number) i and size
«N (I —I )/I . More generally, we give constructions
of ultrametric sets on the hypercube for any tree for
vrhich an ultrmnetric set exists. It is possible that these
constructions can be improved to yieM the ultranmtnc
set of minimal dimension for any tree.

In the rephca-symmetry-breaking model2 for the
infinite-range spin-glass, the equilibrium states are
vectors a&hose itht component is m;, the magnetization
of the ith site. In Refs. 3 and 4 it is shown that under
the Euclidian metric, any triangle among these states
satisfies condition (1) with probability 1. We would
»ke a polynomial bound on the number of states in or-
der to shoe& that there is no contribution to the zero-

temperature entropy. Theorem 1 in case (c) will yield
this if we can extend it to bound the case where a
smail set of triangles violates ultrametricity. This
motivates the following definition.

Let ( Y;d) be a finite metric space of cardinahty k.
Let T(Y) be the set of triangles in Y and T'(Y) be
the subset of those triangles violating condition (1).
( T( Y) j = (3k). Similarly consider ( Yk, d ) a sequence
of finite metric spaces of cardinahty k, for arbitrarily
large integers k.

Definition 2.—(Yk,d) is almost ultrametric if and
only if

lim ~T'(Yk) I/IT(Y, )(=0.

( Y,d ) is q-almost ultrametric if and only if
[ T'( Y)[» (~3)k ' for 3 «q & 0.

The union of any ultrametric set of size O(N) on
the N-hypercube with its mirror image comprises an
example of an almost-ultrametric set. In Ref. 10 we
prove the following theorem, for Y taken from one of
ca!ies (a), (b), or (c).

Theorem 2: If ( Y,d) is q-almost ultrametric then
I Yl » ( 2~3N)~~.

This theorem is proved by apphcation of a theorem
of Spencer" to show that there is an exactly ul-
trametric subset of Y of size at least (2/3&3) V'Iz+ l.
Theorem 1 then yields the result.

In Ref. 7 experimental evidence was presented that
the 2-opt tours in the traveling salesman problem are
ultrametrically organized. It is generally expected that
there will be an exponential number of these. 6 It
would be very interesting if there were only a polyno-
mial number, as this might form the basis for an effec-
tive algorithm. ' If one considers a tour on n cities as
a subset of rank n of the (2) set of links and uses the
metric of case (a), Theorem 1 bounds the largest ul-
trametric set of tours by (2). Theorem 2 indicates a
polynomial bound on the size of any set of tours which
is q-almost ultrametric. The metric of case (a) is the
appropriate metric and was used in Ref. 7.

Degmtion 3.—( Y;d) is e ultrame-tric if and only if
for every triple (ei,e2,e3) of distinct points of Y we
can find a triple (ai„o2,o3) of points in a fixed ul-
trametric set (X,d) such that e; 6 8 (o;, e) for
i = 1,2, 3, where B(a&,e) is the ball of radius e around

In Ref. 9 structures which seem to be v%-ultra-
metric on the hypercube in our definition are con-
sidered. These may be exponential in size. '0

In conclusion, ~e have stated theorems bounding
the size of ultrametric structures. These strongly sug-
gest that there is no contribution to the entropy of the
Sherrington-Kirkpatrick spin-glass from the multiplici-
ty of equilibrium states in the thermodynamic limit.
%'e have not quite proven that there is no such contri-
bution to the entropy as ~e do not understand the ex-
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act nature of corrections to ultrarnetricity which occur
in the replica-symmetry-breaking model for finite N.
One possibility is that a srna11 fraction of the triangles
violate ultrametricity (almost ultrametric), in which
case we have sho~n strong bounds. Another possibili-
ty is that all the triangles violate ultrametricity by a
small amount (e-ultrametric). This question deserves
further study. In any case the single spin-flip meta-
stable states (known to be exponentially numerous'3
are at most ~-ultrametric since their deviations from
ultrametricity reflect both the deviations of the
equilibrium states from ultrametricity and the spread
of the metastable states from the equilibrium states.

Further, it is true for any instance of the traveling
salesman problem either that there are a polynomial
number of 2-opt tours or that these tours are not q-
almost ultrametric for any finite q. In our opinion, the
2-opt tours are most likely analogous not to the
equilibrium states of the spin-glass, but rather to the
metastable states. The computational evidence prob-
ably indicates an underlying (quasi) ultrametric struc-
ture, corresponding to the equilibrium states.

Finally, large enough structures can be constructed
to encourage ultrametric memory models, even for the
case of exact ultrametric trees with a rich branching
structure [since one only expects to store 0 (N ) states
in any spin-glass]. Our constructions of embeddings
on the hypercube of general trees may be useful in this
regard.
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