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Large-Scale Properties and Collapse Transition of Branched Polymers:
Exact Results on Fractal Lattices
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The asymptotic properties of branched polymers are studied on the two- and three-dimensional
Sierpinski gaskets, with use of exact recursion equations. It is sho~n that loops are irrelevant on
large scales and the exponents 8 and v for lattice animals are obtained exactly. In the presence of
self-interactions, a collapse transition occurs at a nonzero critical temperature. At the transition the
value v, of the gyration-radius exponent is very close to its value in the compact phase, in analogy
with recent numerical results on two-dimensional branched polymers.

PACS numbers: 61.41,+e, 05.50.+q, 64.60.Cn, 75.40.—s

The study of models of branched polymers on Eu-
clidean lattices has been very fruitful in the recent
years. Deep connections have been discovered
between this problem and other areas of statistical
mechanics, such as lattice animals, percolation, ' and
the Lee-Yang edge singularity for Ising magnetic sys-
tems. This progress has led to specific predictions,
e.g. , for the average gyration radius of polymers in di-
lute solution. 2

There are several motivations to extend the study of
polymer statistics to fractal lattices. First, exact solu-
tions may be obtained for some simple fractals, giving
the possibility to investigate the range of validity of
general results derived, for regular lattices, by the
field-theory and renormalization-group approaches.
For example, the number of different branched poly-
mers made of N monomers and their average gyration
radius are expected to grow as p, ~N ~ and N", respec-
tively, for large N: 8 and v are universal exponents,
which are different from the analogous quantities for
linear polymers but are invariant when configurations
containing loops are taken into account or are discard-
ed in the statistics. We provide here a direct verifica-
tion on exactly solvable models that these asymptotic
behaviors and the universality properties also hold on
fractals. A second motivation comes from the remark-
able relation2 8 —1 = (d —2) v for Euclidean lattices. It
appears to hold exactly for all d ~ 8,3 and the question
arises of how this relation is modified on fractal lat-
tices. Our results show that the exponents 8 and v no
longer obey as simple a relation and are now indepen-
dent.

Our final, and strongest, justification has to do with
the collapse transition that branched polymers may un-
dergo in dilute solution in a poor solvent when the
temperature is lowered. 4 5 %e show in the present
Letter that such a transition also exists for polymers
with attractive self-interactions on two- and three-
dimensional Sierpinski gaskets. This result is of great
significance because fractal lattices have been advocat-
ed as a new field for the study of phase transitions. 6

Up to now, ho~ever, the actual situation was disap-
pointing: Solvable models had transitions only at zero
temperature, as for Ising and Potts spin systems on
Sierpinski gaskets, 6' and models of physical signifi-
cance with nontrivial transitions could only be treated
by approximate methods. s 9 The models considered
here show a phase transition at finite temperature, for
which the critical behavior may be determined exactly
and compared to the numerical results available for
Euclidean lattices.

The fractal lattices treated here are defined recur-
sively and exact renormalization equations (RE) may
be written down in terms of a small number of cou-
pling constants. Several studies have been devoted to
the problem of linear polymers on these lattices, in the
self-avoiding walk limit, '0 " i.e., without self-in-
teractions between monomers, or in the interacting
case. ' A collapse transition can also exist for linear
polymers on sufficiently ramified fractals; it will be the
subject of a separate publication. ' The generalization
to branched polymers of the methods first used in Ref.
10 for a self-avoiding walk is straightforward in princi-
ple but raises. some difficulties in practice. The related
technical points will be discussed in a more complete
publication, including results on other fractals.

All thermal properties of a polymer on a lattice can
be deduced from the generating function G(x, T)
=QQ(N, P)x~w~, where Q(N, P) is the number of
different configurations per site of a polymer having N
monomers and P pairs of nearest neighbors. The in-
teraction strength ~ is related to the temperature T by
w = exp(e/f), e ( )0) being the attractive energy as-
sociated with a pair of nearest-neighbor bonds. For
simplicity, in the following we restrict the attractive in-
teractions to bonds within first-order units of the frac-
tal lattice. In several models of linear polymers it can
be demonstrated explicitly' that this restriction plays
no role in the determination of the critical exponents.
One expects this result to be quite general, on univer-
sality grounds, and the restriction has the advantage
that the recursion equations do not contain the interac-
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tion strength w exphcitly (it appears only in the initial values of the generating functions). An analysis of the equa-
tions established for noninteracting polymers is therefore sufficient to obtain the critical exponents for the full

problem. Anyway, it is clear that if a collapse transition exists with restricted interactions, it will also exist when
attractive interactions are present on all scales. Of course, to obtain the precise form of the phase boundaries, o
the specific heat. etc-. it would be necessary to use the full equations with interactions on all stages

The simPlest fractal lattice on which we find a collapse transition is the 2D Siepinski gasket. 6 A closed set of RF
is obtained with six restricted generating functions which are described in Fig. l. These functions obey the follow-
ing equations'4:

&""=A[1+28+28']+28'C+F[8'+g'+28D],
8'+"=8 +8 +F[48C+2AB]+F2[8+D],
C'"+"= AB'+ 38'C + F[7C'+ 28D] + F'[C + g]

=3 +8[6C +4AC+2A']+D [2D+38']+2F[2CD+gD+BC+BF. ]

+ 14C + 128CD +6ABD + 382&+ 3F[C +D2+4Cg]
F'+"= 3FB + 6F2C + F3,

(lb)

(lc)

(le)

where, for clarity, the iteration index r has been suppressed on the right-hand side. The initial values of these
functions are

(g, 8, C, D, P, F)' =(1, x, xw w, wi, x +3wx2)

For a given interaction w there exists a critical value x, ( w) above which the iterations diverge. For x = x, (w), we

found that the recursion system (1)-(2) has the following general asympotic behavior for branched polymers:

g (r) g kr 8(r) gp C(r) Ckr D(r) gyk2r E(r) g+k3r F(r) yak —r (3)
where A', 8", . . . , F and k ( & I) are finite constants. It is more convenient to work with new, nondiverging
variables, and the form of (3) suggests the choice

a=AF, b=B, c=CF, d=DF2, e=EF3, f=F.
In terms of these variables, we find that three fixed
points are relevant.

(1) The fixed point (a, . . . , f)'= (0.2009, 0.3276,
0.0231,0.0232, 0.0022, 0). This is reached for small
values of the interaction, w & w, = 5.5. We identify it
as a random-animal fixed point ( T ~), correspond-
ing to the swollen phase of the polymer. The critical
exponents are obtained from the linearized recursion
equations around the fixed point (4). Only one eigen-
value is greater than 1: )). = 2.63093. . . . The average
size of the polymer varies as N", with v

=In2/In)). =0.71655. The exponent () can be obtained
most directly by a finite-size scaling argument for
GL (x, ), the generating function of animals on a gasket
of size L at the critical value x, (w =1). This is ex-
pected to diverge as L ' ", and a direct evaluation
of the dominant terms in G (x) gives

G( (x, )—
r=1 (

where L = 2 and k is the constant defined in Eq. (3).
Comparing the behavior of the two sides for large k,
we get

(5)

FIG. 1. Diagrams representing the six restricted generat-
ing functions for branched polymers on the two-dimensional
Sierpinski gasket. C" corresponds, for instance, to config-
urations where a part of the polymer joins two vertices of an
I. th-order triangle while one of its ends penetrates through
the third vertex. The bottom diagram shows a term8"C"F" contributing to 8'+".
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D = ln3/ln2 being the fractal dimension of the gasket.
The numerical values are 8 = 0.5328 and 5 = 2.2370. A
calculation of the leading singularity of G(x) when
x —x„along the lines of Ref. 10, gives the same
result for 8.

(2) The fixed point (a, . . . ,f)"= (0, 0, ~15/30, 0,
—,', , 0) is reached when starting with large values of the

interaction strength, w ) w, (low temperatures). It
gives one relevant eigenvalue X = 3, corresponding to
v, = 1/D =0.63093 and therefore to a finite monomer
density per site when W ~. This is a compact fixed
point which describes the collapsed phase of the poly-
mer.

(3) The fixed point (0.0592, 0.0750, 0.1253,
0.0225, 0.0474, 0) is obtained for w = w, and has two
eigenvalues greater than 1: A. i

= 2.991 81 and
X2=1.19941. We identify this tricritical point as cor-
responding to the collapse transition of the branched
polymer. The average radius of the polymer then

scales as N"' with v, = ln2/Inl. i =0.63250, extremely
close to the value v, for the collapsed phase. The
behavior of thermodynamic quantities near the transi-
tion can be easily deduced from the free energy per
site, 4 whose singular part varies as ~

w —w, ~, with
n=2 —Ink. i/lnk2 = —4.0269. The transition is very
weak and the specific heat very smooth. On periodic
lattices the numerical value for 2D lattice animals

v, =0.509+0.003 is also quite close to the value

v, = —,
' for collapsed polymers. Our results suggest that

this proximity is not accidental and has a deeper and
general origin.

Several remarks are in order.
One can check explicitly that discarding in Eq. (1)

the terms due to configurations with loops does not af-
fect the asymptotic behavior and the value of v. Lat-
tice animals with and without loops belong to the same
universality class, in agreement with the field-theory
argument for regular lattices. ' Also, the value
v=0.71655 is larger than the value v = 0.641 for an-
imals on 2D Euclidean lattices': The polymer is swol-
len on the gasket, contrary to what happens for ran-
dom walks.

The problem of linear polymers is recovered if all

terms containing the functions E and I' are suppressed
in Eqs. (1) and (2). The truncated equations have
only one fixed point, corresponding to the swollen
phase of the chain" with v=0.7986. There is no col-
lapsed phase, in agreement with earlier results. '2

The relation (5) generalizes the relation (8 —1)/
v = d —2 for Euclidean lattices. It shows that on frac-
tals the two exponents 8 and v are independent in gen-
eral. The quantity 5 appearing in (5) is a new fractal
exponent, not reducible to previously defined quanti-
ties. Equivalently, we may define a new dimension d„
specific to the animal problem, by requiring that the
form of the Parisi-Sourlas relation be preserved and by

writing

(8 —1)/v= d, —2.

On all other fractals that wc have studied 5 is also
larger than 2, suggesting that in general d, ~ d. No
simple relation seems to exist between d, and the
spectral dimension.

The problem of branched polymers is much more
difficult on 3D Sierpinski gaskets. To obtain a closed
set of RE one needs eleven restricted generating func-
tions (taking symmetries into account) and we had to
use computer enumeration to sort the large number of
polymer configurations ( —10 ) to be considered. We
report here only the main results, which are qualita-
tively similar to the 2D case. The three different re-
gimes expected for branched polymers are identified:

(i) At infinite temperature (w =1), the configura-
tion energies play no role and the problem reduces to
the random-animal model. We find that v=0.6057,
8= 0.7567, and 8 = 2.4018. This fixed point is reached
for all values of w & w, —2, when interactions are re-
stricted to first-order units.

(ii) When the temperature is lowered a transition
occurs for w = w, . At this tricritical point, the geomet-
rical polymer exponent is v, =0.5055 and the thermal
exponent is n= —2.9267. The transition is less weak
than for the 2D case, but the exponent v, is still close
to the value v, = 1/D = —,

' corresponding to a compact
phase.

(iii) Finally, at low temperatures (w & w, ) the poly-
mer is in a collapsed phase, with v, = —, .

It is to be noted that, as in the 2D case, the equa-
tions for the linear polymer problem are contained in
the general system by our keeping only a restricted set
of recursion equations, with appropriate boundary con-
ditions. In fact, the system has probably additional
fixed points, but they cannot be reached when starting
from initial conditions corresponding to attractive
monomer-monomer interactions. Other fractals with
finite ramification order allow a similar exact treat-
ment of the polymer problem. In general, the re-
currence equations will be quite complex and will have
to be generated by computer: An interesting direction
for future work will be to see if simple approximations
of the real-space renormalization-group type can give
accurate results for these systems.

In conclusion, we have studied the large-scale prop-
erties of branched polymers on simple fractals, the 2D
and 3D Sierpinski gaskets. A collapse transition has
been found at a finite temperature in both cases, with
a geometrical exponent v, at the transition only slightly
larger than for a compact polymer, in close analogy
with recent findings on 2D Euclidean lattices. The
present work provides a concrete example of an exact-
ly solvable nontrivial phase transition on a fractal. The
approach may be applied to other problems, like linear
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polymers, '3 and to other fractal lattices, opening the
way to various extensions and confirming that fractals
may help gain insight into critical phenomena.
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