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Divergence of the Chapman-Enskog Expansion
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The Chapman-Enskog expansion for a fluid in uniform shear flow is investigated with use of a
Bhatnagar-Gross-Krook model for the nonlinear Boltzmann equation. It is shown that an expan-
sion of the pressure tensor in powers of the uniformity parameter (the shear rate) about the origin
does not converge for hard spheres. However, a convergent expansion about the point at infinity
can be used to establish that this Chapman-Enskog expansion is asymptotic.

PACS numbers: 51.10.+y, 05.20.0d, 05.60.+w, 05.70.Ln

one of the most successful applications of non-
equilibrium statistical mechanics is the calculation of
transport coefficients for a simple fluid. These are the
coefficients in an expansion of the average fluxes of
energy, momentum, etc. , in powers of appropriate uni-
formity parameters (e.g. , temperature gradient, veloci-
ty gradient). For a low-density gas this expansion is
generated from the Chapman-Enskog solution to the
Boltzmann equation. ' To lowest order (Navier-
Stokes) the average fluxes have the familiar forms of
Newton's viscosity law, Fourier's law of heat conduc-
tion, and Fick's diffusion law. The Navier-Stokes
coefficients calculated in this way are in excellent
agreement with experiment for a wide range of gases
and their mixtures. Higher-order terms in the
Chapman-Enskog expansion presumably provide suc-
cessively better approximations for the average fluxes,
and characterize the conditions under which the
Navier-Stokes forms are a good approximation. How-
ever, in spite of its long history and obvious impor-
tance, there appear to be few exact results bearing on
the convergence of the Chapman-Enskog expansion.
The first is due to Ikenberry and Truesdell2 for a gas of
Maxwell molecules (inverse fourth-power potential) in
uniform shear flow. They find an explicit expression
for the average stress tensor as a function of the shear
rate that is analytic about the origin. A second exam-
ple is due to McLennan3 for a general class of cutoff
potentials. He proves convergence of the Chapman-
Enskog expansion for the linearized Boltzmann equa-
tion. Finally, there is a quite general discussion by
Grad4 that indicates that the expansion is at least
asymptotic.

The existing evidence, both experimental and
theoretical, therefore suggests that the Chapman-
Enskog expansion provides a well-behaved representa-
tion of the macroscopic fluxes for a nonequilibrium
gas. However, Grad's analysis leaves open the possi-

bility that the expansion actually could be divergent, 5

although sufficiently asymptotic to explain experimen-
tal verification of Navier-Stokes-order results. In
such a case the relevance of higher-order transport
coefficients (e.g., Burnett, super-Burnett, etc.) and the
full Chapman-Enskog distribution function itself
would be questionable. The purpose of this Letter is
to show that the Chapman-Enskog expansion for a
very simple physical model is in fact divergent but
asymptotic, except in the limits considered by Ikenber-
ry and Truesdell and by McLennan.

The system considered is a simple gas in uniform
shear flow. 6 The macroscopic state is characterized by
a uniform temperature and density, and a local veloci-
ty field given by

"re/ "rJt = —', atj Ptj. — (3)

Except for the case of Maxwell molecules, the Boltz-
mann equation is too difficult to solve, and so we can
consider instead a model equation suggested by Bhat-
nagar, Gross, and Krook' (BGK),

(r)IBt+v &)f= ((f f ). — —(4)

representing a flow along the x axis with the constant
gradient along the y axis. For this simple state the
only uniformity parameter is the shear rate, a, and the
only nontrivial flux is that for the average momentum.
The latter is determined from the pressure tensor, de-
fmed by

P/J g
d'um (ut u, ) (v, uj)f—(r,—v, t),

where f(r, v, t) is the one-particle distribution func-
tion satisfying the nonlinear Boltzmann equation. The
hydrostatic pressure is related to the pressure tensor by

p = Pttj3, and conservation of energy implies the rela-
tionship
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Here, fL is the local equilibrium distribution function
defined in the usual way such that the first five mo-
ments of fand fL are equal. Also, ( is an average col-
lision frequency independent of velocity but generally
a functional of f through its dependence on pressure.
The simplest case corresponds to a potential of the
form r ", for which f~p with a= (n —4)/2n. In the
following only this case is considered. The BGK
model preserves the most important properties of the
Boltzmann equation, such as the equilibrium solution
and the conservation laws. It is a highly nonlinear
equation, through the functional dependence of f and
the parameters of fL on f.

The Chapman-Enskog expansion generates a special
solution to (4) such that all of the time dependence
occurs through p(l). (It is perhaps more usual to use

f(r, v, l) = g(V,p(l);a'), (5)

where V = v —u and a'= a/(. Substitution of (5) into
the BGK equation and elimination of the time deriva-
tive by use of (3) provides a differential equation for
the Chapman-Enskog solution:

1 + 3 agPycl'a —ag V g = gL,

Here, P» = PJ/p is a dimensionless form of the pres-
sure tensor. An equation for P,

" follows immediately
from the definition (2) and Eq. 6):

the temperature; however, for the special state con-
sidered here the temperature is proportional to the
pressure. ) The distribution function can be written,
therefore, as

I + 3 aklPkl~a . ~ij+ alkPk'l+ ajkPki 3aklPk—'lPJ'= o Ja
(7)

Equations (7) are a closed set of equations for the pressure tensor, whose solution specifies all of the parameters of
(6) for determination of the Chapman-Enskog distribution function. Finally, expansion of this distribution func-
tion in powers of a' yields the representation obtained from the usual Chapman-Enskog method.

Convergence of the Chapman-Enskog expansion can be determined from the existence of series solutions to
Eqs. (6) and (7). Here, attention will be limited to an investigation of the series solution for P~. This component
of the pressure tensor is proportional to the nonlinear shear viscosity, q(a), and is therefore one of the most im-
portant physical properties of uniform shear flow. Furthermore, as a second moment of the distribution function it
provides an indirect study of the series solution for (6) as well. Following Zwanzig, 7 a closed nonlinear second-
order differential equation for P~ is obtained from the set of Eqs. (7),

,' u'z'P—(i!i')" —', nz'—l l+ 2z( —,
' —u)y](P')'+ [I+ —', (2 —n) zP+ 9 ( —,

' —n) (1 —a) z2il 2]p = 1, (8)

where ill = —P~(a')/a'—= 71(a)/q(0), and z = a"'.
Consider first the case of Maxwell molecules, for
which n = 0. Equation (8) then reduces to an algebraic
equation whose real solution is'

iII(z) = (2/z)sinh [ —,
' cosh '(1+9z)].

This result is analytic in the region ~z~ & —,'. The
Chapman-Enskog expansion therefore converges for
Maxwell molecules.

For potentials with other power laws (aAO) a
closed-form solution is not known and we look for a
solution of the form

t cients as allowed by the maximum size of a variable
in our computer (+10+-4932). In Fig. 1 we plot
sgn(c ) ln(

~
c ~/m! ) for m = 5, 10, 15,. . . . (Note that

~ c~ ~

~ m! for all m so that positive values correspond
to c & 0 and vice versa. ) Two systematic features are

TABLE I. First coefficients in the expansion of the re-
duced shear viscosity Q in powers of z (c ) and in powers of

y(z)= Xc z.
nt =0

(9)

By inserting this into Eq. (8) one gets a nonlinear re-
cursive relation for the coefficients c, which can be
solved numerically. We have considered in detail only
hard spheres (n= —,

' ) and all of the following results
refer to that case. Table I shows the first ten coeffi-
cients. Up to m=7 they behave regularly, but from
m =8 their absolute values increase rapidly. A com-
puter program was used to generate as many coeffi-
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FIG. l. Behavior of the coefficients c in the expansion
of the shear viscosity Q in powers of the square of the shear
rate. Only the points corresponding to m = 5, 10, 15,. . . are
plotted.
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F16. 2. Reduced shear viscosity f(z) as obtained from
the expansion in powers of z ' ' (solid line). The broken
vertical line indicates the location of the radius of conver-
gence. The truncated series in powers of z, Q'~'(z), for
N = 1, . . . , 6, are also shown.

observed from these data: (i) The coefficients c can
be grouped in blocks of increasing size, representing
consecutive values with the same sign. Moreover,
after m =24, the length of a block exceeds that of the
preceding block by exactly five. (ii) The points fit
very well to two straight lines with the same slope, im-

plying the form

fc /
A)~ m!. (10)

We have estimated A. = —', and A —5 x 10 . The
behavior given by Eq. (10) implies that the series (9)
diverges for all z. Consequently, the Chapman-Enskog
expansion of the shear viscosity is divergent in the
BGK model for hard spheres.

A divergent series can nevertheless be useful for es-
timation of the shear viscosity if it is asymptotic. To
establish this we have also studied an expansion about
the point at infinity given by

~(z) z-2/3 X c -m/3 (11)
m=0

The coefficients for the first few terms in this series
are also given in Table I. These coefficients change
sign every four or five terms, and the behavior for
large m is given approximately by

fc [=—W) (12)

y(N)(z) = X c zm (13)

with A. =3 23 and A —10 4. In contrast to the ex-
pansion (9), the series (11) is convergenta for ~z ~ & 17.

= ~, or a'& —,'. Figure 2 shows Q(z) as obtained
from the series (11) for —,

' ( z ( 1. Also shown are
the partial sums of the Chapman-Enskog expansion
(9),

for N = 1, . . . , 6. Except for the super-Burnett order
N= 1, the partial sums match well to Q(z) at z = —, .
This confirms the expectation of Grad that the series is
asymptotic. For a given N, the partial sum can be
made arbitrarily accurate by decreasing z; however, for
fixed z the approximation is not necessarily improved
by increasing N.

In summary, the nonlinear BGK equation for hard
spheres leads to a divergent but asymptotic Chapman-
Enskog expansion for the pressure tensor, when ap-
plied to a fluid under uniform shear flow. Although
the analysis here was limited to hard spheres, we ex-
pect that the same conclusions apply for the class of
power-law potentials since the expansion coefficients
in (9) should be continuous functions of n, except at
the singular value for Maxwell molecules, a=0 [the
value for which the coefficients of the derivatives in
(8) vanish].

It is difficult to determine if this divergence is an
artifact of the BGK model or whether it is truly
representative of the Boltzmann equation itself. For
example, McLennan"s proof of convergence for the
iinearized Boltzmann equation does not apply to the
linearized BGK model in general. 9 It is possible, then,
to have convergence of the linearized Chapman-
Enskog solution to the Boltzmann equation while the
corresponding solution for the BGK model could
diverge. However, the transport properties for the
special state of uniform shear flow considered here are
intrinsically nonlinear beyond Navier-Stokes order
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(since higher-order derivatives of the velocity field
vanish, the linearized Chapman-Enskog expansion is
trivially convergent). It is reasonable to conjecture,
therefore, that the divergence found here is a property
of the nonlinear Boltzmann equation as well.
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