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Double-Helix Current Drive for Tokamaks
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Double sets of m = 1 helical coils fed by appropriately phased radio-frequency currents are shown
theoretically to be capable of driving both toroidal and poloidal currents in a toroidal plasma by
means of the nonlinear Hall effect. It is shown that total toroidal current is optimized when the ra-

tio of the plasma circumference to the pitch length of the helical coils is 1.35.

PACS numbers: 52,35.Mw, 52.30.—q, 52.50,—b, 52.55.Fa

Recent experiments have shown that toroidal
currents can be driven in a plasma by rf or higher-
frequency currents in a double set of helical coils or in
a large-area helical array. ' ~ These results are impor-
tant for tokamak research because they offer the possi-
bility of continuous current drive, overcoming the lim-
itations of normal inductive current drive.

In the experiments of Dutch and McCarthy' a dou-
ble helix of m = 1 coils (see Fig. I) completely spans
the toroidal plasma vessel. These are driven by two
separate ( —S.S MW, 330 kHz) rf generators with a
phase difference of m/2. The rf fields of the structure
thus progress in the poloidal and toroidal directions.
The dominant spatial harmonic of this field has m = l.
There was a steady toroidal magnetic field. A vertical
magnetic field was provided for toroidal MHD equilib-
rium. A steady driven torodial current of up to I kA
and a steady poloidal current were observed.

In this paper we present a theoretical and computa-
tional analysis of this mode of current drive based on
Maxwell's equations and Ohm's law with the inclusion
of the nonlinear Hall term. As pointed out by
Thonemann, Cowhig, and Davenport6 in their founda-
tion paper on the interaction of traveling magnetic
fields with ionized gas, the origin of the driving force
on the electrons is understandable in macroscopic
terms since the changing magnetic field induces
screening electron currents which interact with the
fields from the external coils to produce a force in the
direction in which these fields move. The situation is
analogous to an induction motor. The helical
geometry complicates this simple picture. In our calcu-
lations we obtain explicit expressions for the radial dis-

FIG. 1. Schematic diagram showing the m =1 double-
helix structure used to drive torodial and poloidal currents.

tribution of the toroidal and poloidal components of
the current density for a range of plasma parameters
including resistivity, rf field amplitudes, and external
coil geometry. These are integrated to give the total
driven currents, and computed results are used to
show which choice of parameters maximize the driven
currents.

Our study is made in a frequency range such that the
ions are not brought into motion by the moving mag-
netic fields but the electrons are. This requires that
the radio frequency co and the electron-ion collision
frequency v„ lie between the ion and electron cyclo-
tron frequencies (referred to the rf field strength).
This moving —magnetic-field current-drive technique
does not rely on the use of wave-particle interaction
effects which act only on a subgroup of electrons
within the electron velocity distribution. Rather, it
uses a nonlinear force which acts on the entire electron
gas. In a system where an electron current is driven by
a moving magnetic field, one might imagine that the
ions ~ould be set into motion by electron-ion col-
lisions and, in a completely isolated plasma, both ions
and electrons would ultimately move in step with the
field (causing the net current to vanish in time). This
possibility is common to all rf current-drive schemes.
In practice, some ion-momentum relaxation mechan-
ism, such as charge exchange or the counterfeeding of
fuel gas, must exist to ensure a net current. Hugrass
has shown that an ion-momentum relaxation mechan-
ism with effective frequency as low as u„m, /m; is suf-
ficient to ensure substantial net current.

The analysis presented here may be related to the
ideas of helicity injection, but it is more straightfor-
ward to regard it as an extension of the successful ro-
tating magnetic field theory and experiments. 9 %e
consider the simplest physical MHD model, developed
by Hugrass and Jones, for nonlinear Hall-effect
current drive, taking the generalized Ohm's law to be

E—(ne) 'Jx 8= ~J

for a plasma of uniform density n and scalar resistivity
The Hall term (Jx8) provides a mechanism for

current drive independent of the usual inductive
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current drive in tokamaks. A tensor resistivity could
be used, but in the regime of greatest interest (i.e.,
that in which the Hall term dominates) the exact form
of the resistivity is of little consequence. The analysis
will be carried out for arbitrary values of q and n; how-

ever, it will be sho~n that the well-known skin effect
which inhibits the penetration of rf fields into a plasma
when the resistive term dominates is completely re-

placed by a physical process which allows penetration
of the fields when the Hall term dominates in Ohm's
law. %e consider, in this model, an rf frequency range
e8 /m, ( cu ( e8 /m, (i.e., ~ lies between the ion and
electron cyclotron frequencies referred to the vacuum
rf field strength, 8„) so that the plasma can be regard-
ed as being composed of a mobile electron fluid and a

uniform immobile ion population, as discussed in de-
tail by Hugrass. ' As will be seen in our analysis, where
an arbitrary steady field is introduced, the ion cyclo-
tron frequency in the steady field plays no role in the
current-drive mechanism nor in defining the frequen-
cy range required.

The large-aspect-ratio limit is taken, in which a
cylindrical plasma of radius a is wound with a series of
helical rf coils of pitch length i. We define k =2m/i
and introduce the natural helical coordinate system re-
lated to the coil structure, with unit vectors i, X, and

g, where X= m0+kz, )=rxX, and (r, O,z) are the
usual cylindrical coordinates. ' Here we have retained
a general poloidal number m although, in the experi-

ments with double helical coils, m = I so that ( is

parallel to the coil windings.
The distribution of externally applied currents can

be approximated by the continuous distribution
(I, Re{exp[i {at +mO+ kz)]}5(r—a)/a where I, is a
measure of the strength of the rf currents in the helical
coils.

The fields and currents satisfy Maxwell's equations
and Ohm's law, with the Hall term [Eq. (1)]. In gen-
eral, the solutions can be Fourier analyzed in time;
ho~ever, it was shown by Hugrass" in a similar con-
text that the general steady-state solution is given suf-
ficiently accurately by the zero- and first-order har-
monic terms. Thus, after waiting for transients to die
out, we can write any of the field quantities current
(J), electric field (E), or magnetic field (B) in the
form

B(r, X, t) =Bo(r)+ —,'b(r, X,t) + —,'b (r, X, t), (2)

where b(r, X,t) and the other lower-case quantities are
proportional to e't '+"'. In the plasma region, Ohm's
law [Eq. (I)] implies

Eo —(ne) '(JoxBO+ —,
' jxb'+ —„' j'xb) = gJO, (3)

e —( ne) '(j x Bo+ Jo x b) = gj.

The solution to these equations should be matched to
the external fields. The magnetic field produced by
the applied currents, in the absence of plasma, can be
written in terms of Bessel functions (for 0 ( r ( a ) as

B,„,=B,«i+8 [ —2il~ (kr)r+2(k +m /r )'t I~(kr)/kg]e' "'+"'

where 8,„, represents a steady toroidal field and 8,
which depends on the pitch of the coils, is the magni-
tude of the rf field on the axis.

If there are no imposed external steady electric
fields (Eo ——0), then a physically realistic particular
solution to the set of nonlinear equations can be ob-
tained when there is no radial oscillating current, i.e. ,
when j,=0. The r component of Ampere's law then
implies that b&

——0 and j„=0 and, from Eq. (3),
Jo& ——0. If we express the vector operators in terms of
the helical coordinates, ' the r component of Faraday's
law implies

koe( = —o) b„ (6)

where ko = ko(r) = (k' + m /r )'i, and hence the $

component of Eq. (4) gives

e( —(ne) 'Jo„(ko/co)et v)j(. —— (7)

Thus e&, j&, and b, must all be in phase. The X com-
ponent of Eq. (3) then leads to

gJo„———(2ne) ' Re(j(b,')
= (2ne) '(ko/cu )j)e(". (8)

Elimination of Jo„and j& from Eqs. {7) and {8) gives

the following closed nonlinear equation for e&'.

a' I a
ko z (kore() —koe(

kor

[ I + —,
'

(ko/cone g)') e( [']
in the plasma (0 ( r ( a ).

Matching to the appropriate external field allows us
to express the boundary condition for e& at r = a in
terms of Bessel functions (for the case m = I):

K,' (kr) Be( IC,
' (kr)

ar k, ar

ei (a)t+X)
(10)

We can then use Eqs. (7) and (8) to recover the steady
plasma current Jo„ in terms of e&, viz. ,

—,
' (ko/~net)'(et)'

Jox =
ko 1+—,

' (ko/~net)')e(~'
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The solutions are completely specified in terms of
three dimensionless parameters: A. = a/5, which is the
ratio of plasma radius to the classical skin depth,
y = e8„/nt, v„=8„/net, which is the ratio of the elec-
tron cyclotron frequency to the electron-ion collision
frequency, and K=2na/I, which is the ratio of the
plasma circumference to the pitch length of the helical
windings. Analytic solutions are possible, " not only
for the linear limit (y 0), which corresponds to the
classical skin effect, but also for the strongly nonlinear
limit (y » A, ) where the Hall term dominates in
Ohm's law and leads to full penetration of the rf fields
into the plasma. Physically, the penetration of the
fields is enhanced because the frequency seen by the
electrons moving with the fields approaches zero. In
this case Eq. (9) reduces to

ko 2 (kore&)
—ko e&

——0,
a i a
r kor r

(i2)

which has the solution [with use of Eq. (10)]

e, = (i ~8„/ko) I t (kr) e"'+"'

Hence, in this limit (i.e., ko/caner) » 1)

J =

nectar/(I

+ k'r')' ',

which can be represented in terms of a toroidal com-
ponent

Jo, = necukr /(1+k r ),

and a poloidal component

Jos = ne cur/(1 + k r ) .

The total toroidal current is

1o, ——ner ma'/tr [1—K
' ln(1+ K') ].

The parameters which define the experimental ar-
rangements are primarily the pitch of the helical wind-
ings and the strength of the rf fields required. A most
important conclusion is illustrated in Fig. 2, which

shows the total toroidal current as a function of the in-
verse pitch, K, for the strongly nonlinear case with
maximum penetration of the rf fields. This current
has a maximum when K = ka = 1.35, thus defining the
optimal experimental arrangement. If the pitch is too
small, the rf fields cancel; if the pitch is too large, only
poloidal currents are driven.

Figure 3 sho~s the radial distribution of the normal-
ized toroidal and poloidal current densities for various
values of the field penetration. The degree of field
penetration is determined by the ratio y/A. and here X

is held constant at 10.0 while y is increased by an in-
crease of the strength of the rf field. The increased
penetration results in a larger fraction of the maximum
posstble current o.e = loe/'loe(max ) and ttz = los/los(max)
to be driven. %e use o.z and n, to label the curves,
which were obtained by a numerical solution of Eq.
(9). Note that, even for maximal penetration, the
current profiles are hollow. This result can be ex-
plained physically by noting that the rf screening
currents have only ( components, and as r tends to
zero f z, so that at r =0 the time-averaged non-
linear Hall-effect term has no component along z. Fig-
ure 4 shows the variation of the normalized total
driven currents na and n, as a function of y, i.e., in-
creasing rf field strength. It can be seen that, in all

cases, as the rf current is increased, a stage is reached
where both the poloidal and toroidal current reach
their maximum values corresponding to Hall-effect
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FIG. 2. Variation of the normalized toroidal current arith
~ (the normalized reciprocal pitch length). For full penetra-
tion, optimal current drive occurs ~ith K = 1.35.

FIG. 3. Radial distribution of normalized steady current
densities for full penetration (a = 1.0) and partial penetra-
tion (n ( 1.0). Here ~ = 1.35 and i = 10.0.
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the direction of the poloidal driven current: An ap-
propriate choice will result in an enhanced q value on
axis.

The authors are grateful to Professor I. R. Jones for
discussions and encouragement. This work is support-
ed by the Australian Research Grants Scheme and the
Australian Institute of Nuclear Science and Engineer-
ing.

FIG. 4. The dependence of the steady normalized toroidal
and polodial currents, e, and o.&, on increasing rf field
strength (y increasing) for various values of the resistivity
(v)~ ) 2).

dominance. Notice that if 7 ) h. almost all of the max-
imum possible current can be driven. As observed by
Hugrass" for the case K =0 (straight conductors) the
steady currents are sensitive and sometimes non-
unique functions of the driving rf fields. The actual
current for a given value of y is determined by the
star tup conditions.

%e have sho~n that both poloidal and toroidal
steady currents can be driven by rf currents in sets of
external helical coils. The optimum conditions for this
mechanism of current drive are 7 ) ) and tr=1.35. It
should be noted for tokamak applications that the
sense of the pitch of the helical coils will determine
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