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Phase-Space Approach to the Density-Functional Calculation of Compton Profiles
of Atoms and Molecules
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The phase-space distribution function corresponding to a ground-state density of a many-electron
system proposed earlier is explored as a means for generation of momentum-space properties
through density-functional theory. Excellent results are found for the spherically averaged Comp-
ton profiles for several atoms and the molecules H2 and N2, as dwell as the directional Compton pro-
files for N2, thereby providing both a useful scheme for computation of such profiles and confirrna-
tion of the basic theory. The entropy-maximization procedure employed is discussed from the
point of vie~ of information theory,

PACS numbers: 31.15.+q, 31.20.Lr, 31,90.+ s, 32.80.Cy

In connection with a thermodynamic transcription of
the density-functional theory of electronic structure, '

there recently has been proposed a phase-space distri-
bution function f(r, p) corresponding to a ground-
state electron density p(r). A unique f(r, p) was ob-
tained by the invoking of an entropy-maximization
principle, in analogy to the classical case. The result-
ing distribution function is Maxwellian in nature with a
local temperature T(r) and leads to various thermo-
dynamic and fluid-theoretic equations for the electron
cloud. " In the present work, this same f (r, p), and a
simple generalization of it, are used to predict mo-
mentum-space properties of an atom or molecule: the
spherically averaged and directional Compton profiles.

Consider an N-electron system characterized by the
ground-state density p(r). Identify a phase-space dis-
tribution function f(r, p) with this density, and as-
sume it to yield the correct kinetic energy density
r(r, p) as weil:

p(r) =„' d p f(r, p), z d r p(r) =N; (I)

t (r, p) = ,
'

J, d'p p'f (r,—p),

f(r, p)

= [2mkT(r)] '~'p(r)exp[ —p'/2kT(r)]. (5)

Here P(r) = [kT(r)] ', where the local temperature
T(r) is defined in analogy with the ideal-gas expres-
sion for kinetic energy by

—', p(r) kT(r) = r(r, p). (6)

tained' by a maximization of the entropy defined as

S = „d r s (r), s (r) = —k J~ d'p f (lnf' —1), (3)

subject to the constraints of correct density [Eq. (1)]
and correct kinetic energy density [Eq. (2)]. In Eq.
(3), k is the Boltzmann constant. Introducing La-
grange multipliers o.(r) and P(r) for the two con-
straints„respectively, one obtains

f (r, p) = exp [ —~ (r) —p(r) p'/2],

which, on evaluation of the Lagrange multipliers from
Eqs. (1) and (2), becomes

J d'r t(r, p) =Ek;„.

( ) I x&p
8,. p;

()
If we presume the validity of f(r, p) as a phase-

space distribution function, the spherically averagedThe most appropriate distribution function is then ob-
~ momentum density X(p) is given by

X(p) = Jfd r f(r, p) = J d r [p(r)/2n] p(r)exp[ —p(r)p /2]. (7)

and the spherically averaged Compton profile, within the impulse approximation, can be obtained from

J (q) = —,
'
Jt x(p)p ' d'p = (2n ) '~'d'r P(r)'~'p(r)exp[ —p(r)q'/2l,

Iq I

which is a basic equation for calculation of the aver-
aged Compton profiles of atomic and molecular sys- Although the term V2p does not contribute to the glo-
tems. bal kinetic energy, it introduces quantum oscillations

Now consider the form of the kinetic energy density in the kinetic energy density. The choice of the coeffi-
r(r, p) which defines T(r) and p(r) through Eq. (6). cient —, in this term ensures that T(r) will vanish at
This kinetic energy density is not unique. The most large distance and hopefully T(r) then remains posi-
natural form, adopted here, in terms of orbital densi- tive throughout the system. (No exceptions to this
ties [p, ], is rule have been found. )

For the ground state of a hydrogen atom of nuclear
charge Z, one has' T(r) =Z/3kr, and one obtains
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from Eq. (8) It may be noted that the phase-space distribution
function f (r, p) of Eq. (5) depends only on scalar P; it
leads to only an averaged momentum density and
Compton profile. To obtain the anisotropic momen-
tum density and Compton profile, one can use a simi-
lar entropy-maximization procedure constrained to
yield correct components of the kinetic energy density,

This compares favorably with, although it is not identi-
cal with, the exact result for this case,

Should one omit the V2p terms in Eq. (9), on the oth-
er hand, the results are that T (r ) = Z /3k and J (q )
bec
Eq.

r (r. p) = '„„-„'4P 4P»dP P f(r, p), (12)

(13)

omes a simple Gaussian, which is less accurate than
(10). and similarly or the y and z components. Following

the same lines, the final expression becomes

j'(r, p) = (2ir) '~'[p„(r)/3»(r) p, (r)]'~'p(r)exp[ ——,
' Ip„p„'+pP»»+/3P, '}],

where P„,P», andP, are defined as

P„(r)= [kT„(r)] ', ,
' p(r)k—T„(r)= t„(r), etc.

The directional Compton profiles can now be defined as

J„-(q)=)Id'px(p)h(q —p k),

(14)

where k is a unit vector along the direction in which the Compton profile is to be evaluated. For a diatomic
molecule the parallel (z direction) and the perpendicular components of the Compton profile are given by the ex-
pf essions

J~~ (q) = (2m) ' z d3r/3~~ (r)' 2p(r)exp[ —
P~~ (r)q2/2],

J, (q ) = (2m) ' ' d'r P, (r)'~'p(r)exp[ —P~ (r)q'/2],

which can be compared with the spherically averaged
Compton profile given by Eq. (8). The three direc-
tional temperatures or the P's can be considered as the
diagonal components of a kinetic-energy-density —re-
lated tensor.

Again there is arbitrariness in the definition of the
kinetic energy density. The choice made here is

(

1 1 Bp(
i„(r,p) =—8; p; Bx

etc.

Each of r„, r», and t, is nonnegative every~here.
Terms —,

' B2p/Bx2, are omitted because of tentative in-

dications from numerical calculations that component
kinetic energy densities so defined would go negative
in some regions of a molecule.

Tables I and II compare the results of calculations by
this method for atoms and molecules with results com-
puted by the Hartree-Fock method. Compton profile
J (q ) for atoms are given in Table I. First, for the hy-
drogen atom, Eq. (10) is compared with the exact Eq.
(11). There is very little difference. Next, for the
noble-gas atoms He through Xe, Eq. (8) is compared
with the results of a full Fourier transformation of the
numerical Hartree-Fock wave functions. In the
present calculations, the Hartree-Fock wave functions
of Clementi and Roetti were employed. ' Equation (8)
is seen to give overall good accuracy, for the whole
range of q, for all cases.

Results for two molecules, H2 and N2, are presented
in Table II. For H2, the averaged J(q) as calculated
from Eq. (8) with use of the Hartree-Fock wave func-
tion of Snyder and Basch6 shows close agreement with
the J(q) determined from Fourier transformation of
the wave function as reported by Eisenberger. ' For
N2, J»(q), J~~(q), and J, (q) computed from Eqs.
(8) and (16) and the Hartree-Fock wave function are
given together with the corresponding quantities ob-
tained from Fourier transformation of the wave func-

tion by Tawil and Langhoff. s Agreement is excellent.
The present phase-space approach to determine

Compton profiles is a pure density-functional method,
operating as it does with only the electron density.
[The use of Hartree-Pock orbitals in the present paper
is only a convenience; one could have as well em-
ployed Kohn-Sham orbitals (and kinetic energies),
which are determined by the density. ] Fourier
transformation of the Kohn-Sham orbitals is a
density-functional scheme, too, ' but this method
lacks rigor in that neither the wave function nor the
single-particle density matrix is obtainable from the
Kohn-Sham orbitals, so that their Fourier transforma-
tion does not give proper momentum-space orbitals.

A less accurate phase-space approach has existed for
some time, based on the fact that direct calculation of
momentum density from spatial electron density is
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TABLE I. Compton profiles J(q) for atoms.

b CPresent E xac t L'resent

He

HF Present

Ne

c dPresent HF Present
C

P. esent HI'

O. O

O. l
0.2
Q. 3
0.4
0.5
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.Q

5.0
10.0

0.812
0.791
0.732
0.646
0.546
0.445
0.352
0.206
0.115
0.063
0.034
0.019
0.011
0.0063
0.0006
0.0001
0.0000
0.0000

Q. 849
0.824
0. 755
0.655
0.544
0.435
Q. 337
0. 192
0.106
0.058
0.033
0.019
0.011
0.0068
O. '3008
0.0002
0.0000
0.0000

1.02
1.Ol
0.976
0.924
O. 858
Q. 781
O. 700
O. 540
O. 399
0.288
0.205
0.145
0.103
O. Q73
0.015
0.004
O. 001
O. 000

l.07
l.06
1.02
0.956
0.878
0.791
0.700
0.527
0.382
0.271
0.191
0.134
0.095
0.068
Q. 015
0.004
0.001
0.00'

2.98
2. 96
2.91
2.83
2. 72
2.59
2.45
2. 14
1.82
1.53
l .27
l. 06
0 ~ 876
0. 73Q
O. 331
&. 187
0. 123
O. 024

2. 73
2. 72
2. 70
2.65
2.59
2.51
2.41
2. 17
1.89
l. 61
1 .35
1.12
0.927
0.771
0.346
0.194
0.124
0.022

5.49
5.44
5.27
5.02
4. 70
4.34
3.96
3.22
2.59
2. 10
1.74
1.47
1.27
1.12
0.712
0.486
Oo333
0.073

5.06
5.Oo

4. 96
4.82
4.62

4.Q4

3.33
2.66
2. 11
1.70
1.42
1.22
1.08
O. 736
0.520
0.359
0.075

7.93
7.85
7.62
7.2?
6.84
6.36
5.87
4. 97
4. 24
3.68
3.26
2. 95
2.69
2.49
1. 74
1.22
0.873
0. 246

7. 15
7.05
6.Hq

6.57
6. 2&&

5 7/
4.85
4. 0&

3.44
3.f)3

2. 7b
2. 58
2.44
1 .86
l. 33
0.93'3

0.2613

i0. 82
'3.69
!3.35
9.84
9.21
8.54
7.89
6.73
5.83
5.16
4.65
4.23
3.88
3.57
2.42
l. 72
l. 3Q

0.470

9.74
9.69

5 )

9
77

8.21
7.59
6. 38
5.45
4.84
4, 44
4. 16
3.91
3.68
2. 50
l. 71
1 . 30
0.510

'Equation (10}of text.
Equation (11) of text.

'Equation (8) of text, wave functions from Ref. 5.
Reference 4; numerical Hartree-Fock wave functions.

possible in certain special cases. One such transformation" is exact for a homogeneous electron gas, while anoth-
er'2 corresponds to a gas of almost constant density. Recent revival of interest in the first procedure is due to the
improved numerical results" that it yields for the Compton profiles when evaluated with a good quality (e.g. ,
Hartree-Fock) density instead of a Thomas-Fermi density, although the theory is essentially based on a quasiclassi-
cal phase-space consideration of the Thomas-Fermi theory. Of all methods for computing Compton profiles, the
present phase-space approach is the easiest to carry through. Neither the momentum density of Eq. (7) nor that of
other semiclassical methods has the correct asymptotic
behavior as p

TABLE II. Compton profiles for H2 and N2.

(q} for H
8V

a b
P resent HF

J (q) for N
BV

c
P res ent HF

3
I I

(q) for I
e dPresent HF

3~(q) for N2

dPresent HF

0.0
0. 1
0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
3.0
4.0
5.0

10.0

1.48
1.45
l. 37
1 .24
l.08
0.909
0.744
0.462
0.267
O. 148
0.082
O. 045
0.Q26
0.015
0.0017
0.0003
0.0000
0.0000

l.56
1.52
1.41
1.26
1.07
0.887
O. 713
0.433
0.250
0.142
0.080
0.045
0.026
0.015

5.74
5.68
5.50
5.22
4.86
4.46
4.03
3.18
2.45
l.86
l.42
l. 11
O. 880
0.721
0.372
0.237
O. 154
0.017

5.29
5.25
5. 14
4.95
4. 70
4.39
4.03
3.27
2.56
1.96
1.51
1.17
O. 925
0.749
0.376
0.235
0.148

6. 18
6.09
5.85
5.48
5.02
4.53
4, Q4

3.14
2.40
l. 83
1.40
1.09
0.860
0.695
O. 322
O. 198
0.134
0.022

6.08
5.98
5.69
5.26
4. 75
4.23
3.72
2.89
2.27
1.82
1.47
1.19
0.968
0.792
0.370
0.232
0.153

5.05
5.01
4.90
4. 73
4.50
4.23
3.94
3.30
2.67
2. 11
1.64
1.26
O. 983
0. 779
0.365
0.244
0.169
Q. 019

5.27
5.23
5.13
4.96
4. ?1

.41
4.06
3.28
2.54
l. 94
1.49
1.16
0.927
0. 759
0.380
0.235
0. 147

'Equation (8) of text; double-zeta self-consistent-field (SCF) wave function from Ref. 6.
bReference 7.
'Equation (8) of text; douhle-zeta SCF wave function from Ref. 6.
dReference 8.
Equation (16) of text, douhle-zeta SCF wave function from Ref. 6.
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momentum density of Eq. (7) nor that of other semic-
lassical methods has the correct asymptotic behavior as
P~ oa.

Justification for what has been done here, and justi-
fication for the antecedent works, may be given
from the fundamental theorem of information
theory. In order to predict a distribution X(p)
= fd r f(r, p) from a distribution f(r, p), the prob-
lem was to find the most appropriate f'(r, p) satisfying
two constraints, that fd'p f(r, p)=p(r), where
p(r) is a given distribution, and fd p(p /2)

&& f(r, p) = t(r, p), where T(r, p) is also given and is
everywhere positive. What was done to solve this
problem was just what information theory says will

give the least-biased f(r p): Maximize S= —kfd3r
x fd3p f (lnf —I) subject to the two constraints. 's

The result is not the exact quantum-mechanical
f(r,p), as the difference between Eqs. (10) and (11)
shows. But it is amazingly accurate.

Physical intuition would suggest that p(r) and
t(r, p) should contain a lot of information about
momentum space. That is why the Compton profiles
predicted in the present paper are so good. Greater ac-
curacy can be achieved through the incorporation of
more constraints, as the use of the Cartesian com-
ponents of t in this paper has shown. But information
theory provides a basis for the thermodynamic descrip-
tion of the previous works': Demand that an f(r, p)
exists, optimally packed with suitable information, and
a classical picture at once emerges.

Elsewhere it has been demonstrated that this same
phase-space approach leads to a compact and useful
formula for the exchange-energy functional for
atoms. "

Discussions with Professor Max Berkowitz have
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grant from the National Science Foundation to the
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