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Basis-Independent Tests of CP Nonconservation in Fermion-Mass Matrices
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%e derive a set of invariant quantities in fermion-mass matrices, independent of one's ~eak-
eigenstate basis, the vanishing of which is both necessary and sufficient for CJ' invariance. Our
method is applied to the standard single-Higgs-doublet SU(2) 8 U(l ) model with an arbitrary
number of fermion generations.
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The origin of CP nonconservation observed in the
K-K system remains one of the problems unresolved
by the standard model of the electroweak interactions.
In the minimal SU(2) 8 U(1) single-Higgs-doublet
model, CP nonconservation requires complex Yukawa
couplings and at least three generations. ' Indeed, as
experiments of the last decade show, nature provides
us with at least three families of fermions. The actual
overall number of generations, N, is another aspect for
which the present theory has no answer. The theoreti-
cal possibility of further generations beyond the ob-
served three has recently been the subject of quite ex-
tensive study, 2 with special attention to the role played
by the new fermions in CP nonconservation.

In the standard model the arbitrary N x N complex
fermion-mass matrices, which arise after spontaneous
breaking of the gauge symmetry, represent the
fermion-mass eigenvalues, the mixing-angle parame-
ters, and the CP phases. All these physical quantities
may in principle be obtained from the fundamental
weak-eigenstate representation of the fermion-mass
matrices by a straightforward diagonalization pro-
cedure. In such a procedure, complex mass matrices
may, however, lead to vanishing CP phases. Further-
more, it is not always easy to see which of the phases
appearing in the generalized Kobayashi-Maskawa
(KM) matrix can be rotated away. An interesting
question is, therefore, what are conditions that the
fundamental fermion-mass matrices satisfy to violate
CP invariance? Namely, are there are some invariant
quantities in fermion-mass matrices, independent of
one's weak-eigenstate basis, the vanishing of which is
both necessary and sufficient for CP invariance?

Recently, Jarlskog" identified the deterininant of the
commutator of the Hermitian up- and down-quark
mass matrices as the corresponding invariant quantity
for three generations. A large number of generations
requires different and a larger number of conditions.
Do such conditions exist and what is their nature?
The answer to this question may shed some new light

on the relation between the fermion-mass problem and
CP nonconservation. A first attempt to answer this
question was made by Bernabeu, Branco, and Gronau. 5

However, the set of conditions derived from CP in-
variance was not sufficient to guarantee the symmetry.
The difficulties in finding sufficient conditions were
briefly explained. The purpose of the present note is
to show how one may obtain these conditions sys-
tematically for any number of generations.

To formulate the question, we consider the relevant
terms of the standard-model Lagrangean, after spon-
taneous symmetry breaking:

u~= (ud)L 0 M d +puL&&dL W"

uL UL CuL, dL UL CdL,

utt
—Utt Cutt, dR —

Utt Cdtt",

(2)

where C is the Dirac charge-conjugation matrix and
UL, UP, Utdt are arbitrary unitary matrices. CP sym-
metry of the Lagrangean requires

Namely, it is necessary and sufficient for CP invari-
ance that three unitary matrices UL, Utt, Utt exist such
that Eq. (3) holds. This in turn impHes that the two

+H.c.+. . . .

The left- and right-handed up ( u) and down (d) fields
represent N-component weak-eigenstate fields; M„
and Mz are N-dimensional quark-mass matrices. The
weak-eigenstate fields are defined up to a common un-
itary transformation (UL) applied to both uL and dL

and up to separate unitary transformations (Utt and
Utt) applied to utt and dtt. Therefore, CP symmetry
may be formulated as the symmetry under the set of
transformations
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Hermitian matrices H» = M»M» (q = u, d) satisfy

Ug H„UL = Hg', UL Hd UL = Hd, (4)

that for every pair i,f there is at least one sequence of
nonvanishing matrix elements which starts at i and
ends at f:

and vice versa: Eqs. (3) follow from Eqs. (4). This
may be shown by an explicit construction of the ma-
trices V„' which satisfy Eq. (3).

The existence of a unitary (symmetric) matrix UL

which satisfies both Eqs. (4) is therefore necessary and
sufficient for CP invariance. 5 Our purpose here is to
find equivalent conditions written in terms of invari-
ants of the Hermitian mass matrices H„,Hq alone. It
turns out that this algebraic problem was treated in a
more general context. 6 For completeness we will

present here a detailed solution in the special case of
interest. For simplicity, albeit not strictly required, it
will be assumed that nondegeneracy and nonvanishing
of masses holds separately for the up and down quarks.
Furthermore, before we proceed we note that the ex-
istence of UL which obeys Eqs. (4) in one weak-
eigenstate basis guarantees the existence of such a ma-
trix in any other basis. For convenience, we will first
study the question in the special basis in which one of
the two matrices, say Hq, is diagonal. In this basis we
will determine some general properties of the other
matrix, H„, needed and being sufficient for satisfying
Eq. (4). We will then express these properties as
basis-independent conditions on H„and Hd.

To simplify notations, let us denote the diagonal
matrix Hd by D and the other matrix H„by H. In this
basis we wish to prove that a matrix UL satisfying Eqs.
(4) exists if, and only if, all the cyclic products of ele-
ments of Hare real:

(S)

Here and from now on, repeated indices are not
summed over unless explicitly specified. Equation (5)
applies to any n distinct indices ii, i2, . . . , l„of
1,2, . . . , N and to n = 3, 4, . . . , N. Since for a Hermi-
tian matrix all cyclic products of orders I and 2 are
real, this equation starts to be nontrivial for cyclic
products of order 3. Therefore, at least three genera-
tions are needed for CP nonconservation. '

It is simple to see that Eqs. (5) follow from Eqs. (4).
Since Hz is diagonal and nondegenerate, to satisfy the
first of Eqs. (4) UL must be a diagonal matrix of
phases,

(6)

The second of Eqs. (4) then implies that the elements
H» either vanish or have phases given by —,

' (~;—~, ).
Hence follows Eq. (S). To prove that the latter is also
sufficient for satisfying (4) we will assume with no
lack of generality that H is irreducible. If it were redu-
cible, our proof would apply separately to each of its
submatrices. An irreducible matrix has the property7

HJH~k. H„~w0

To construct the unitary phase matrix UL of Eq. (6),
we arbitrarily choose ni =0 and define all the other
phases by (I (f~ N)

e f=Hi(Hip ' ' 'Hrf/H(iHig' ' 'Hry.

Irreduciblity implies that at least one such nonvanish-
ing sequence of matrix elements exists. It follows sim-
ply from Eq. (5) that any other nonvanishing sequence
would lead to the same phase, and hence Eq. (S) is
unambiguous. This definition implies that all the non-
vanishing elements H~z have phases given by

(Qf cog ), and therefore the matrix UL of Eq. (6)
satisfies Eq. (4).

Our next task is to express Eq. (5) in a basis-
independent manner. We will first write down
equivalent relations in a rather general manner and
then focus on a smaller set of such conditions. We
start by observing that Eqs. (4) lead to the following
general identity for any integer n:

Im Tr[Pi(Hq)Pi (H„)P2(Hd) P„'(H„)]

=0,

where p, ,p; (s= I, . . . , ii) are arbitrary polynomials
with real coefficients. Moreover, we will turn the ar-
gument around and show that Eq. (9) leads to Eq. (5),
and hence is also sufficient to yield Eq. (4). Consider-
ing Eq. (9) in the basis in which H&= D, we note that
an arbitrary polynomial P, of this nondegenerate ma-
trix represents a real diagonal matrix with arbitrary ele-
ments p&, P, (D)&k=&,zp&. When we take P,'(H) =H,
Eq. (9) reads

Im(H&H„H„)(pip2 ~ p,")=0. (10)

Since pl' are arbitrary, each of the coefficients
Im(HJHJk H„) must vanish, so that Eq. (5) is ob-
tained.

The basis-independent conditions, for arbitrary poly-
nomials P„

Im Tr(P, (H, ) H„P,(H„)H„.P„(H,)H„)

=0 (3~ n~N), (11)
are therefore necessary and sufficient for CP invari-
ance. Hermiticity of H„allows our restricting n to the
above values. Our next task is to replace these equa-
tions by a finite number of explicit conditions on H„
and Hd. This is done in a straightforward manner by
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Im Tr(HdH„HqH„HdH„) = 0;

0»a&b&c»N —i.
(13)

This follows from the Hermiticity of H~ and from the
cyclic invariance of the trace. The trace for two equal
powers (a = Ij„ for instance) is always real, and condi-
tions for powers of decreasing order may be reordered
into the form of Eq. (13). These equations imply that
in the basis in which Hz is diagonal, all the cyclic prod-

ucts of order 3 of elements of H„are real.
For three generations this is sufficient for CP invari-

ance. Therefore for N = 3 the single condition8

Im Tr(H2HdH„Hg~) = 0 (i4)

is necessary and sufficient for CP symmetry to hold.
In general one has ,' N(N 1) (—N—2) —equations of

type (13). Whereas they imply that all cyclic products
of order 3 in Hare real, they do not always lead to real
cyclic products which involve a larger number of ma-

trix elements„as required by CP invariance. For the
latter to be real„ in general„one must also use some of
Eqs. (11) and (12) with 3 & n» N. We note, howev-

er, that if H does not have zero off-diagonal matrix
elements then no extra conditions beyond Eqs. (13)
are needed. This may be easily seen from identities
such as

H~k( = HJ HjkHk(H);

= ~H;k~ (H; HkHk;)(HkHj, jHj;),

use of the linear structure of Eq. (11) in each of the
polynomials and the Cayley-Hamilton theorem. These
imply that an equivalent set of conditions may be writ-

ten by replacement of each of the polynomials in Eq.
(11) by a single power,

P (Hg) =I,Hd, Hg~, . . . , Hg+ ' (I » s» n). (12)

This constitutes a set of conditions not all of which are
independent. The number of these conditions is of or-

der NN for large N.
Our final goal is to extract from these equations a

smaller set from which all the other relations follow.
This will be achieved by our first considering Eqs. (11)
and (12) for n=3 and then augmenting this set by

some independent conditions for n & 3. Starting with

n =3, we note that the integer powers of Hd may be
taken in increasing order,

lustrate a possible choice of these conditions for the
two eases N = 4, N = 5.

For N=4, one must only study the special case of
two vanishing off-diagonal matrix elements Hk
= Hjj= 0 where i, j, k, and I are four distinct indices.
This is the only case in which reality of the four-cycle

Hjjkj does not follow from reality of all the three-
cycles. To yield a real value for Hjjkj, one may use two
of Eqs. (11) and (12) with n =4. It is straightforward
to show that for a nondegenerate Hd a suitable choice
of two such conditions is

Pi = P2= I, P3= Hq, P4= Hq,

Pi = P2 = I, P3 = Hd, P4 = Hd3.

We conclude that for four generations one has six real-
ity conditions, for the traces of H2HdHQHd2, H2
x HdH„Hd, HjjHjjH„Hj, H„HdH„Hd H„Hd, H„HdHjj
x Hq, H~HdH„Hj, which are necessary and sufficient
for CP invariance.

In a five-generation model, one has ten distinct
three-cycle products, the reality of which follows from
the ten Eqs. (13). In order for one of the fifteen dis-
tinct four-cycles Hjjd not to be necessarily real as a
consequence of these equations, the two matrix ele-
ments H,„,Hj must vanish. This leads to the vanish-
ing of ten of the four-cycles. It is easy to see that at
most three four-cycles may then be nonreal, namely
when four off-diagonal elements vanish. These may
be, for instance, Hi234 Hi235 and Hi435 when

Hi3 = H24 = H25 = H45 = 0. It is straightforward to
show that the following choice of three of Eqs. (11)
with n =4 is sufficient for the reality of these three
four-cycles:

P, =P2=I, P, =H„, P4=H~,

Pi = P4 = Hd, P, = I, P3 = Hd2,

~] P4 Hd f P2 Ip +3 Hd .

With Eq. (13), these equations lead to real four-cycles
in any other case as well. Finally, there are twelve dis-
tinct five-cycles, each made up of the product of five
off-diagonal elements. For a five-cycle not to be
necessarily real once the three- and four-cycles are
real, the remaining five off-diagonal elements must
vanish. This leads to the vanishing of all the other
five-cycles. It is easy to see that for this special case
one may use a single equation to yield a real five-cycle:

= IH, jl '(H„H,,HJ, )(HjJHj„Hkj), (15) Tr [H„,H, ]'=0.

and similar identities for cyclic products of higher or-
der.

For the general case of possibly vanishing off-
diagonal matrix elements some of the conditions with
n ) 3 are needed to yield real cyclic products of order
n & 3. These may be judiciously chosen. %e will il-

This condition may be replaced by at most four of Eqs.
(11) with n = 5. Altogether, for N = 5 the set of
necessary and sufficient conditions for CP invariance
consists of reality conditions for fourteen traces: ten
of type (13) (n =3), three applied to the matrices of
Eq. (i7) (n=4), and Eq. (IS) (n=5)
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The two examples of N= 4 and N = 5 illustrate the
procedure of deriving a set of conditions for CP sym-
metry in the general case of N generations. To con-
clude this study a few remarks are in order:

(a) The number of basis-independent conditions ob-
tained for CP invariance is in general (except in the
case N=3) larger than —,

' (N —1)(N 2),—the number
of phases in the KM quark-mixing matrix. Moreover,
it is also larger than —,

' N(N 1)(—N 2) —the number
of distinct three-cycle products in a Hermitian mass
matrix. The three-gneration model is a very special
case, in which the number of CP mass-matrix invari-
ants is equal to the number of KM phases.

(b) The above-derived invariants vanish if, and only
if, CP is conserved. Still, it is not at all obvious how to
use these quantities as measures of CP nonconserva-
tion, as was suggested in Ref. 4 for the three-
generation model. This illustrates again the difficulties
of using the quark-mass matrices to define the recently
discussed concept of "maximal CP nonconservation"
in a model-independent manner. 9

(c) Our method of testing the CP invariance of a
gauge theory may be applied to other theories. Here
the search for invariants of the fundamental fermion-
mass matrices must be correlated with a study of the
CP properties of other sectors which are potential
sources of CP nonconservation. This may be useful
for model building. For leptons this study may be
generalized to the case of Dirac and Majorana mass
terms. This work is currently in progress.
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