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We sho~ that the Hamiltonian of the 10 Hubbard model commutes ~ith a one-parameter family
of transfer matrices of a new 20 classical model corresponding to t~o coupled six-vertex models.
Central to this result is a new local algebraic relation, a generalization of the (infinitesimal) star-
triangle relation.

PACS numbers: 05.50.+q, 64.60.Cn, 75.10.Lp

The 10 Hubbard model is a tantalizing problem in
the field of exactly integrable systems. Lich and Wu'
showed that the Bethe-Yang Ansatz provides a con-
sistent description of the eigenfunctions of the model. 2

The algebraic structure of the model is, however, not
well understood. Typical problems in 10 many-body
theory solvable by the Bethe Ansatz, such as the XXZ
model, have a very rich algebraic structure as well.
Fundamental to this structure is the fact that the Ham-
iltonian commutes with a one-parameter family of
transfer matrices of an appropriate 2D classical statisti-
cal mechanical system. 3 Such a relation implies that
the Hamiltonian commutes with an infinite number of
"currents, " and an analogy with exactly integrable sys-
tems in classical mechanics begins to emerge. If dif-
ferent transfer matrices (each commuting with the
Hamiltonian) themselves commute, 4 then all the
"currents" commute mutually, and the analogy is
complete. Relations of the above nature are very im-

portant because they not only provide a deeper under-
standing of the models, but also lead to computational-

ly powerful techniques, such as the algebraic Bethe An
sa~z. '

The present study was motivated by the fact that no
nontrivial commuting operators are known for the 1D
Hubbard model. We present here an infinite number
of currents which commute with the Hamiltonian.
This is achieved by the identification of a new model
in 2D statistical mechanics, for which the transfer ma-
trix commutes with the Hamiltonian. At the root of
the commutation relation is a key result of this work, a
local algebraic structure [Eq. (14)],which is a nontrivi-
al generalization of that found by Sutherland for the
XYZ model. 3 The latter is an infinitesimal version of
the ubiquitous star-triangle (Yang-Baxter) relation.
The star-triangle relation is well known to be a suffi-
cient condition f'or the integrability of a model, but not
necessary. The structure described here is interesting
in that it is a new and broader sufficiency condition, at
the infinitesimal level.

The Hamiltonian of the 1D Hubbard model is writ-
ten in the form

I

H = —X(C."„.C..+H.c.)+ Ux(n. , --,')(n. , ——,').
By using a Jordan-Wigner transformation, we obtain

H= X(cr++ttr +H.c.)+g(r++tr +H.c.)+—Xa'r', (2)

with

Cml (&t &m —1)~m ~

The sum over m is from 1 to W and periodic boundary conditions are assumed.
If we set U = 0, Eq. (2) describes a pair of XI' models, each of which commutes with the transfer matrix of a

six-vertex model. By continuity in U, we expect that 0could be related to a problem of a pair of six-vertex models
coupled to each other in a suitable manner. Indeed it was sho~n by use of Trotter's formula that H is the loga-
rithmic derivative of T, the transfer matrix of a certain coupled arro~ vertex model. At this stage there exists an
ambiguity; several models may be constructed such that H is the logarithmic derivative of T (corresponding to dif-
ferent breakups of H). In order to resolve this ambuguity, we constructed a commuting current j by an indepen-
dent argument (the details will be reported elsewhere), where

J —tX[tr~+, o~tr~ t
—H c.]+t—X(tr~+tcr~ —tr~ tr~+t) (r~+r~~t)+(tT r)
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The reader may verify directly that j commutes with H. The current (with U=0) is in fact related simply to the
second derivative of the transfer matrix for the free-Fermi six-vertex model with reference to the spectral parame-
ter. We next ask the question, can the form of the transfer matrix be deduced if we demand that its first and
second derivatives with reference to a spectral parameter be reducible (apart from trivial factors) to forms involv-

ing H and j only& A detailed analysis suggests the statistical model described below.
Consider a model of two zero-field six-vertex models corresponding to arrows on the solid and dashed square

lattices in Fig. 1. At each of the vertices (solid-solid and dashed-dashed) allow for six vertices obeying the ice rule
(the three configurations shown in Fig. 1 and three obtained by reversal of ail arrows) with Boltzmann weights a,
b, and c. The sohd circles are diagonal vertices, coupling the two models by giving a weight e" (e ") to parallel
(antiparallel) arrows. The transfer matrix connecting a row of vertical arrows to an adjacent one may be written
compactly in the form

T=Tro(Lw, oLw ).0
.-. Li.o) (4)

L„O=&pS„OX T„O&0, Ii) = COSh(b/2) + Sinh(h/2) aOrO,

S„o=(a + b)/2+ [(a —b)/2]a„'o-0+ c(o-„+ai) + H.c.).

T„o is of the same form as S„owith r's replacing a' s. Thus at each site n we have two sets of Pauli matrices (o.'s
and 7 s) as in the Hamiltonian, and the trace in (4) is over the row of horizontal arrows. The commutator of T
with 0 can be written as

[TH]= XTro(L)), 0. . . [L„+,0L„.0,II„„+)1 . L, 0),

with

H„„+,= (o.„a.„+,+H.c.)+(o.~ 7)+—(a„*r„'+o„'+)r„'+)).

Setting R„„+,0 = [L„+i OL„O,H„„+i ], we have

t
Rz, z + i, 0 = Gs, w + 1, 0 G& + i.n. 0'

where G~„+) O=L, 0H~„+)L„o. For the "free Fermi" case the parameters a, b, and c obey the condition
c~= a2+ b2, and if we restrict ourselves to this class, then the right-hand side of Eq. (7) has a separation of vari-
ables into the form M„o —M„+I 0 with

m„o—- ——[(~0 ~„+H.c.) + (~- r) ]Ii) ' +—[4 i)' ~„'r.'4 i)
—~„'r„*]. (&)

Defining Q„O= L, 0M„0, we find

Rnn+ l, 0 Ln+ ), OQn, O Qe+), OLn, O

ln the case of the XYZ model, the commutator with the transfer matrix of the eight-vertex model has the form of
Eq. (9) but with Q =Q. The commutator [T,H] vanishes on summation over n In this pr. oblem, Q is not Her-
mitean and hence one needs to investigate its structure further. Writing Q„O =A„0+8„0and Q„O——A„o—8„0,
we fllld

R„„,,=(L„„~„,~„,,L„,)+(L„„,a„, a„,,L„,). —

%e may express

(10)

Q„O= —[o„'v „*,L„O]+lOD„OIO
U —3

with L„~o~ =5~ox T„o. This yields

y
—Ig I —I q

sinh(2b )

D 0= ——b +c L o
c 8 8
a Bc Bb

= g [L„",', ~„'r„']+[D„,, ~;,;]

with g = U/[4sinh(2b) l. A calculation shows that
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the right-hand side is proportional to [L~t rt), tTtirti] for a
choice of the parameter g. Kith

I

I

I

I

e
c +2b2

(2b ) [L„ti, trite ti].
4ab

Combining with Eq. (10) we find

FIG. I. The model is defined by placing arrows on the lat-
tice shown. The distinct vertex weights are a, b, c, and e"
corresponding to configurations sho~n.

~,.+t.o = «.+t.P, o
—~.+t.eL.,o)+ [L. i iiL o,Ã0]

with No [(c2+2——b2)/4ab ]ID . Substituting in Eq.
(6) and summing over n, we find [T,H] = 0.

In summary, we have shown that the transfer matrix
T [Eq. (6)] commutes with H proved the three param-
eters b/a, c/a, and b obey the two constraints,
1+b2/a2= c2/a2 and Eq. (12). Thus we have a one-
parameter family of transfer matrices commuting with
H. One scheme for parametrizing the weights is to set
a = 1, b = sinh(r), c =cosh(t). An expansion of the
transfer matrix in powers of t yields

i' i'
T(t) = T(0) 1+tH+ H'+ —( —t—)J + O(t'),

where T(0) is the right-shift operator. The coeffi-
cients of powers of t in the expansion are the infinite
currents commuting with H.

We have not succeeded in showing that the transfer
matrices corresponding to different values of t them-
selves commute. This result requires an elaborate

analysis, and ~ill be presented separately.
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