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A new approach to Preisach's hysteresis model, which emphasizes its phenomenological nature
and mathematical generality, is briefly described. Then the theorem which gives the necessary and
sufficient conditions for the representation of actual hysteresis nonlinearities by Preisach's model is
proven. The significance of this theorem is that it establishes the limits of applicability of this
model.
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Almost fifty years ago, the German physicist
Preisach proposed a model of magnetic hysteresis. ' It
was based on some hypotheses concerning the physical
mechanisms of magnetization. This model was pri-
marily known in the area of magnetics where it orig-
inated much discussion (see, for instance, Neel,
Woodward and Della Torre, Brown, and Barker et
al ) In. t. he 1970's, the Russian mathematician
Krasnoselskii came across Preisach's model and under-
stood that it contained a new general mathematical
idea. Krasnoselskii separated this model from its
physical meaning and represented it in a pure
mathematical form which is similar to a spectral reso-
lution of operators. As a result, a new mathematical
tool has evolved which can now be used for the
mathematical description of hysteresis of any physical
nature. At the same time, Krasnoselskii's approach
has strongly revealed the phenomenological nature of
Preisach's model. This, in turn, has led to the prob-
lem of determining the conditions under which actual
hysteresis nonlinearities can be represented by this
model. In this paper, I first briefly describe the
essence of Krasnoselskii's approach, and then formu-
late and prove the theorem which gives necessary and
sufficient conditions for the representations of actual
hysteresis nonlinearities by Preisach s model. The sig-
nificance of this theorem is that it establishes the lim-
its of applicability of Preisach's model.

Consider a transducer which can be characterized by
an input u(t) and an output f(t). This transducer is
called a hysteresis transducer if its input-output rela-
tionship is a multibranch nonlinearity for which a
branch-to-branch transition occurs after each input ex-
tremum. Only the case of a static hysteresis nonlinear-
ity will be further discussed. The term "static" means
that branches of hysteresis nonlinearities are deter-
mined by sequences of input extrema, awhile the speed
of input variation between extremum points has no in-
fluence on branching.

Usually, the hysteresis transducer is a part of a sys-
tem. Consequently, its input is not known beforehand
but is determined by the interaction of the transducer
with the rest of the system. For this reason, a

mathematical model is needed which itself (because of
its structure) will detect and accumulate input extrema
and will choose the appropriate branch of the hys-
teresis nonlinearity with respect to the accumulated
history. By using such models one can attempt
mathematical descriptions of systems with hysteresis.
Such models can be constructed by use of the
Preisach-Krasnoselskii approach which is described
belo~.

Consider an infinite set of simplest hysteresis opera-
tors j &. These operators can be represented by rec-
tangular loops on the input-output plane. Numbers o.
and p correspond to "up" and "down" switching
values of input. Outputs of these operators may as-
sume only two values, +1 and —1. Each of these
operators has a local memory. This means that given
the output f (to) at instant to and the input u(t) at all
subsequent instants of time t ~ to, then the output
f(t) is uniquely determined for all t ~ to. In other
words, in the case of local memory, the past exerts its
influence upon the future through instantaneous
values of output. Along with the set of operators j &,
consider an arbitrary weight function, p, (n, p). Then
the Preisach-Krasnoselskii model is given by

f(t) =I'u(t) =„ I p(n, p)j pu(t)dndp.
~ «» p

In the sequel, the case when p, (n, p) is a finite func-
tion with a support within some triangle T will be dis-
cussed. This case includes the important class of non-
linearities with limiting hysteresis loops (envelopes).

The investigation of model (I) is considerably facili-
tated by its geometric interpretation. This interpreta-
tion is based on the fact that there is a one-to-one
correspondence between operators j & and points
(n, p) of the half-plane n ~ p. By use of this fact, it
can be concluded that, at any instant of time, the trian-
gle T is subdivided into two sets (see Fig. 1): 5+(t)
consisting of points (n, p) for which j &u (t ) = I, and

(t ) consisting of points (n, p) for which

j &u(t) = —l. It can be shown that the interface
L (t) between S+(t) and 5 (t) is a staircase line
whose vertices have n and p coordinates coinciding
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FIG. 2. Congroent hysteresis loops.

FIG. 1. A geometric interpretation of the model.

with local maxima and minima of input at previous in-
stants of time. The final Itnk of L(t) is attached to
the line a=p and moves when the input changes.
This link is a horizontal one and moves up when the
input increases, and it is a vertical one and moves
from right to left when the input decreases. By use of
the above geometric interpretation, the model (1) can
be represented in the following equivalent form:

f(t) = „, „p(a,P)da dP —„J p(a, P)da dP.
S+(r) S (t)

(2)

From expression (2), it follows that an instantaneous
value of output depends on the shape of the interface
L (t ), which in turn is determined by the extremum
values of input at previous instants of time. Conse-
quently, the past extremum values of input shape the
interface L (t ), and in this way they leave their mark
upon the future. Thus, the model (1) has a nonlocal
memory. It is remarkable that a superposition of sim-
plest hysteresis operators j & with local memories
results in a hysteresis operator (1) with a new qualita-
tlvc property: nonlocal memory.

It turns out that not all extremum input values are
accumulated by the model (1); some of them can be
wiped out. More precisely, it can be shown [by use of
the rules of motion of the final link of L (t ) ) that the
following fact is valid.

Property A (wiping out property) Ea-ch local .—max-
imuHl wipes out thc vcrticcs %'hose m coordinates arc
below this maximum, and each local minimum wipes
out the vertices whose p coordinates are above this
mink mum.

It is clear that the wiping out of vertices is
equivalent to the erasing of the history associated with
these vertices. Thus, subsequent variations of input
might erase some previous history.

It is worth noting that the above property is natural
and consistent with some experimental facts. Indeed,
experiments in the area of magnetics show the ex-
istence of limiting hysteresis loops (envelopes) whose
shapes do not depend on how these limiting loops are
approached. It means that any past history can be
wiped out by input oscillations of sufficiently large
magnitude, which is in agreement with property A.
The wiping-out property can also be linked to the re-
cently discovered magnetic Kaiser effect. '

Another characteristic property of the model (1) is
illustrated by Fig. 2. It can be stated as follows.

Property 8 (congruency property) All hys. —teresis
loops corresponding to the same extremum values of
input are congruent in the geometrical sense. The
proof of this property can be easily obtained from the
fact that for input variations within the same range,
the final links of the staircase interfaces will move
identically within the same triangles. This will result
in equal output increments, which is tantamount to the
congruency of hysteresis loops.

Now, we can formulate the fundamental result.
Theorem. —Properties A and 8 constitute necessary

and sufficient conditions for a hysteresis transducer to
be represented by the model (1) on the set of piece-
wise monotonic inputs.

Proof:—Necessity: Let a hysteresis transducer be
represented by the model (1). Then, this transducer
should have the same properties as this model; in par-
ticular, it should have the properties A and B.

Suff1ciency: The proof of this part is constructive.
First, the weight function, p(a, p), will b, e found for
the given transducer with use of some experimental
data obtained for this transducer. Next, it will bc
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(3)

By use of the geometric interpretation of the model
(1), it is easy to prove that

F (u. P) = Jl „I p, (x.y ) dx dy
T(a, 18)

= Jl J p(xy)dx dy, (4)

where T(u, p) is the triangle formed by the intersec-
tion of the lines x = p, y =u, andy =x.

proven that for the above ~eight function, the model
(1) and the given transducer have the same input-
output relationships provided that properties A and 8
hold for the transducer.

To determine p, (u, p), the set of first-order transi-
tion (reversal) curves should be experimentally found.
This can be done by our first bringing the input to
such a value that outputs of all operators y & are equal
to —l. If we now gradually increase the input value,
then we will folio~ along a limiting ascending branch
(see Fig. 3). This branch is called limiting because
there is no branch below it. The notation f will be
used for the output value on this branch corresponding
to the input u = o. The first-order transition curves
are attached to the limiting ascending branch. Each of
these curves is formed when the above monotonic in-
crease of the input is followed by a subsequent mono-
tonic decrease. For this reason, these curves can be
called first-order decreasing transition curves. The no-
tation f'

&
will be used for the output value on the

transition curve attached to the limiting ascending
branch at the point f . This output value corresponds
to the input u = p. Now we can define the function

(5)

%e have used the first-order decreasing transition
curves to determine p, (u, p). But for the same pur-
pose and in a similar manner, we could use the first-
order increasing transition curves which are attached
to the limiting descending branch. These curves can
be parametrized as f, , (see Fig. 3). On physical

grounds (symmetry considerations), it is clear that
curves f & are congruent to curves f, , if p'= —u.
By use of this fact and (3)-(5), it can be easily proved
that

p, (u, p) = p, (-p, —u). (6)

Thus, either the first-order increasing or the first-order
decreasing transition curves can be used for the deter-
mination of p, (u, p).

Now, 1 will prove that if p, (u, p) is substituted from
(5) into (1), then the model (1) and the transducer
will have the same input-output relationships. This is
true for the first-order transition curves because of the
very way in which p, (u, p) was determined. Next, the
induction argument will be used. Let us assume that
the above statement is true for a transition curve
number k, and then I will prove that this statement
holds for a transition curve number k + 1.

Let a be a point at which the transition curve
number k +1 starts (see Fig. 4). This point corre-
sponds to some input value u =o.. According to the
induction assumption, the output values of the trans-
ducer and the model (1) coincide at the point a. Con-
sequently, it remains to be proven that the output in-

& u

FIG. 3. Congruency of first-order transition curves f &

and g FIG. 4. Geometric illustration of the proof of sufficiency.
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crements along the transition curve number k + 1 are
the same for the actual transducer and for the model
(1). Consider an arbitrary input value u =P & n. The
output increment for the transducer will be equal to
the increment of f along the curve ab (Fig. 4). By use
of the geometric interpretation of the model (1), it is
easy to show that the corresponding output increment
for the model is given by

6f = —2 '

p, (x,y )dx dy. (7)
T(a, P)

But, according to (4) and (3), this increment is equal
to the increment of f along the first-order transition
curve cd (Fig. 4). Thus, it remains to be shown that
the output increments along the curves ab and cd are
the same. It is here that properties A and B will be
used. The proof proceeds as follows. If starting from
the point b we monotonically increase the input value
from P back to n, then, according to property A, we
will arrive at the point a. In other ~ords, we will move
along some curve ba which is below the curve ab. On
the other hand, if starting from the point d we mono-
tonically increase the input value from P to 0., then,
again, according to property A, we will arrive at the
point c moving along some curve dc. According to
property B, hysteresis loops bab and dcd are congruent.
Conseqently, the increments of f along the curves ab
and cd are the same and the proof is complete.

It is easy to see that the essence of the proof is in
the reduction of higher-order transition curves to
first-order transition curves. This reduction rests on
properties A and B.

The same fact admits another interpretation. The
experimental data provided by the first-order transi-
tion curves allow one to determine the weight function
iM, (u, P). Then, if we assume properties A and B and
use the model (1), higher-order transition curves can
be determined. In this sense, the mathematical model
(1) has prediction power.

A hysteresis phenomenon is associated with a
memory. For this reason, the model (1) might have
appeal as the mathematical model of memory with
some interesting properties. I will discuss only a few
of them. First, the mechanism of memory formation
in (1) is surprisingly simple and results from the su-
perposition (parallel connection) of qualitatively simi-
lar elements (two-position cells) j,b Se.condly, the
model (1) stores information (extremum values of in-

put) not in particular separate cells (as in the case of
computer storage devices), but some ensembles of the
cells j & participate in storage of each bit of informa-
tion. As a result, if some of the cells j & are de-
stroyed, the stored information might still be
preserved. The above properties are somewhat similar
to those being observed (or suspected) for memories
in biological systems. Ho~ever, it will be imprudent
to speculate now how far this similarity goes.
Nevertheless, it may be expected that the mathemati-
cal tool (1) might find some applications beyond the
area of hysteresis modeling.
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