
V~)LUME 56 14 APRIL 1986 NUMBER 1$

Input States for Enhancement of Fermion Interferometer Sensitivity
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A conventional fermion interferometer, in which the fermions enter only one of the two input

ports, can achieve a phase sensitivity Aqh = 1/Wn, where n is the total number of fermions which

have passed through the interferometer. Here it is shown that by injection of fermions into both
input ports the phase sensitivity can approach 1/n provided that the fermions in the two input
beams are suitably correlated.

PACS numbers: 03.65.8z

A conventional optical interferometer in which light
enters one input port can achieve a phase sensitivity
5@=1/Jn, where n is the total number of photons
which have passed through the interferometer. It has
been shown by Caves' and Bondurant and Shapiroz 3

that when squeezed states of the electromagnetic field
are fed into both ports of an interferometer the
interferometer's sensitivity 5@ can approach 1/n.
Squeezed states are many-body states in which a large

number of bosons occupy a given boson mode. 4 Since
at most one fermion can occupy a given fermion
mode, it is not immediately apparent that fermion ana-
logs of squeezed states can be constructed or whether
fermion interferometers can also achieve a phase sen-
sitivity approaching I/n. It is shown here that under
quasimonochromatic conditions where a large number
of states are made available to the fermions for occu-
pancy, many-fermion states can in fact be constructed
which allow fermion interferometers such as electron5

or neutron6 interferometers to achieve a phase sensi-
tivity approaching 1/n.

The interferometer considered here is depicted in
Fig. 1. For simplicity it will be assumed that the fer-
mion beams are sufficiently well collimated that they
can be adequately described by a one-dimensional
Schrodinger equation. The field operators for the in-

put fields Q't" (z, t) and Q2" (z, t), where z is the distance
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FIG. l. An interferometer in the Mach-Zehnder config-
uration. S~ and 52 are beam splitters; Mi and M2 are mir-
rors. Note that the interferometer has two input ports and
two output ports.

along the respective beam paths, have the form

lii'"(zr) = (2n) ' X dk c'" (ks)e
(1)
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~here
oak =I}k2/2ii}

and the fermion annihilation operators c,'"(k, s ) satisfy the usual anticommutation relations, in particular,

[c."(k,s),c,"'(k,s )],=S.,S,, (k —k ).

1

out (k ) ikl } ikl2, I ikl } ikl2 ~e +e l(e —e )
Co«(k S) 2, ikl} ikl2 ikl} ik}2 cin (k s)
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where il and I2 denote the path lengths of the beams which propagate between S}and S2 via mirrors Ml and M2
respectively. With Eq. (5), operators representing physical quantities measured at the output of the interferometer
can be expressed in terms of creation and annihilation operators of the input modes. This facilitates calculation
since the moments of the operators can then be evaluated by taking expectation values with respect to the input
states- In particular, the number operator for the total number of particles leaving the output ports of the inter
ferometer. expressed ln terms of the input mode creation and annihilation operators, is

2

N= X dk [cI" (k,s)cl" (k,s)+c2" (k, s)c2" (k,s)]. (6)
s=l

S}mllarly the operator ND for the difference in the numbers of particles leaving the two output ports, expressed in
terms of the input mode creation and annihilation operators, is

dkcos[k(l} —I2)][cl" (k,s)cl" (k,s) —C2" (k, s)C2n(k, s)]
dk»n(k(l} —I2) ] [cl"' (k, s)C2" (k, s) —c2" (k,s) cl" (k,s) ]. (7)

At this point it is convenient to introduce the abstract operators

dk[cI" (ks)c2" (k s)+c2" (ks)c'"(k s)],

J = ——' i X dk [cI"' ( k s ) c2" ( k 5 ) —c2"' ( k s ) c '" ( k $ ) ] (&)

J, = —,
'
X,„dk[c}"'(k,s)cl" (k,s) —c,'" (k, s)c2" (k,s)],

which satisfy the usual angular momentum commutation relations. As will be shown, these operators allow one
to take advantage of angular momentum algebra or SU(2) representation theory. The J= (J„,J~,J,) commutes
with the number operator N:

[W, J]=0.
Further, the Casimir invariant J2= J2+ J~2+ J2 can be put into the form

J'= ,
' l}I( ,

' N+ I )+ —W, —
where

(10)

dk ' dk'(c}" (k s) c2" (k', s') c'2" (k, s) cI "(k',s') + cI" (k, s) C2" (k', s') C2"(k', s') cl (k s) ] (11)

The fermions are assumed to have a finite energy spread or, equivalently, a finite spread b.k in k. The range 8 of
the k integration may thus be restricted to ko —Ak/2 ( k ( ko+b, k/2. The field operators for the output beams

are similarly given by

}I}}"'(x,&) = (2m) 'I' dk c}'"'(k,s)e ' "" }Ii2"'(»I)= (2~) 'I'X, dk C2"'(k, s)e ' "' ', (4)
S~ g

If we choose the coordinate z to be 0 at mirror Ml and x to be 0 at mirror M2, the mode transformation performed
by the interferometer may be taken to be6

commutes with J:
[J, W] =0. (12)

When the beam is quasimonochromatic, 5k ( I, —l2)(( 1, cos[k(l}—I2)] and sin[k(ll —I2)] may be ap-
proximated as cos[kl}(ll —I2)1 and sin[ko(ll —I2) ].
%ith this approximation ND takes the form

IVD =2cosQJ, —2sinQJ,

where $ = ko( Il —l2). With the operator for the
difference in the number of particles leaving the two

output ports expressed in terms of J„and J„SU(2)
representation theory will now be exploited to deter-
mine interferometer sensitivity for various input
states.

It will first be demonstrated that when fermions



VoLUME 56, NUMsER 15 PHYSICAL REVIEW LETTERS 14 APRIL 1986

enter the inteferometer through only one port the
phase sensitivity 6@ is at best 1/Jn. Suppose that
ideal particle counters are located at the output ports
and that the fermions enter port 1 of the interferome-
ter. Since no fermions enter port 2 it is evident from
Eq. (11) that the input state is in an eigenstate of 8'
with an eigenvalue of zero. After the fermions have
passed through the interferometer the detectors report
that a total of n particles have passed through the in-

terferometer. From Eq. (10) one deduces that the in-

put state is an eigenstate of Jwith eigenvalue j= n/2.
Since all n photons enter through the input port 1, it is
evident from Eq. (8) that the input state is an eigen-
state of J, with eigenvalue m = n/2. Hence the input
state is of the form ~j,m &, where j= m = n/2. The ex-
pectation values of the moments of ND with respect to
this state can readily be evaluated by standard tech-
niques of angular momentum algebra; in particular,

(No& = n cosg, (AND)2= n sin2$. (14)

The rms fluctuation 6@ in the inferred phase @ for an
ensemble of such measurements is determined by

I = X,„dk c2" (k, s)cI" (k, s),

repeatedly to the state ~j, m& =
~ ,' n, 2n& the—sta—tes

~
—,
'

n, —,
'

& and
~ ,' n, ——,

'
& can be cons—tructed provided n

is odd. With each application of the lowering operator
a fermion is transferred from input beam 1 to input
beam 2. Hence for the state ~

—,
'

n, —,
'

& there are
(n+1)/2 fermions in beam 1 and (n —1)/2 fermions
in beam 2. Consider now the state

The expectation vaiue of ND and its variance are for
this state

(ND& = —,
' [n+ I] sing,

(AND) =cos2@+ —,
' (n2+ n —1) sin2$.

Substituting (14) into (15) one readily obtains a phase
sensitivity

6@= 1/Jn

It is worth emphasizing the generality of this result.
Nothing was assumed about how the n fermions were
distributed in the k-space interval [ko ——,

' Ak, ko
+ —,

' hk j or in the spin space.
An example of a state exhibiting a phase sensitivity

approaching I/n will now be constructed. By applica-
tion of the lowering operator J = J„—iJ»,

The mean square uncertainty ln 4 is then from Eq
(15)

cos'y+ „' (n—'+ n —1) sin'@
(~o)'=

—,
' (n+ I )'cos'd

(20)

This is minimized when sin@=0. Hence the min-
imum rms uncertainty in @ for this state is

Sy,„=2/(n+ i). (2i)
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It has now been shown that fermion states can be con-
structed which allow the interferometer to achieve a
phase sensitivity which for large n has the form n/n,
where a is a constant of order unity. This phase sensi-
tivity is achieved only for phase angles near those
satisfying sin@=0. The particular form, Eq. (18), is

not essential for achieving a phase sensitivity ap-
proaching n/n and n need not be odd. Generally
speaking, if one forms a superposition of neighboring
states

~
—,
'

n, m& lying near m = 0, such states will exhib-
it a phase sensitivity approaching 1/n, provided some
care is exercised in the phasing of the states with
respect to each other in the superposition. With such
states, for which (J,) is small, roughly equal numbers
of fermions enter each port of the interferometer but
in a highly correlated manner.

Here I do not offer any means by which such states
may be generated in the laboratory. It is worth point-
ing out, however, that considerable experimental prog-
ress has been made in generating boson states,
squeezed states, with analogous properties7 by use of
four-wave mixers. s 'o
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