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We show that a class of deterministic lattice gases with discrete Boolean elements simulates the
Navier-Stokes equation, and can be used to design simple, massively parallel computing machines.

PACS numbers: 89.80.+h

The relatively recent availability of sophisticated in-
teractive digital simulation has led to considerable
progress in the unraveling of universal features of
complexity generated by nonlinear dynamical systems
with few degrees of freedom. In contrast, nonlinear
systems with many degrees of freedom, e.g., high-
Reynolds-number flow, are understood only on a quite
superficial level,! and are likely to remain so, unless
they can be explored in depth, e.g., by interactive
simulation. This is many orders of magnitude beyond
the capacity of existing computational resources.
There are similar limitations on our ability to simulate
many other multidimensional field theories.

Massively parallel architectures and algorithms are
needed to avoid the ultimate computation limits of the
speed of light and various solid-state constraints.
Also, when parameter space must be explored quickly
and extreme accuracy is unnecessary, a floating-point
representation may not be efficient. For example, to
compute the drag due to turbulent flow past an obsta-
cle with a modest accuracy of 5 bits, common experi-
ence in computational fluid dynamics shows that inter-
mediate computations require from 32 to 64 bits.
Floating-point representations hierarchically favor bits
in the most significant places,? which is a major cause
of numerical instability. In principle, schemes which
give bits equal weight would be preferable. Because of
roundoff noise, a floating-point calculation can run
away to unphysical regimes, in an attempt to treat each
bit equally.

A simulation strategy can be devised which both is
naturally parallel and treats all bits on an equal footing,
for systems which evolve by discrete cellular automa-
ton rules, with only local interactions.> This avoids the
complex switching networks which limit the computa-
tional power of conventional parallel arrays.

There has been speculation that various physically

interesting field equations can be approximated by the
large-scale behavior of suitably chosen cellular automa-
ta.* We shall here construct lattice-gas automata which
asymptotically go over to the incompressible 2D and
3D Navier-Stokes equations.

To understand the physics behind lattice gases, we
first point out that a fluid can be described on three
levels: the molecular level at which motion, usually
Hamiltonian, is reversible; the kinetic level, in the ir-
reversible low-density Boltzmann approximation; and
the macroscopic level, in the continuum approxima-
tion. At the first two levels of description, the fluid is
near thermodynamic equilibrium. In the last there are
free thermodynamic variables: local density, momen-
tum, temperature, etc. A macroscopic description of
the fluid comes about by a patching together of equi-
libria which are varying slowly in space and time, im-
plying continuum equations for thermodynamic vari-
ables as consistency conditions. This was first realized
by Maxwell,’ and put in final form by Chapman and
Enskog.b

There are many ways of building microscopic
models that lead to a given set of continuum equa-
tions. It is known that one can build two- and three-
dimensional Boltzmann models, with a small number
of velocity vectors, which, in the continuum limit,
reproduce quite accurately major fluid dynamical
features (e.g., shock waves in a dilute gas, etc.”).
Such Boltzmann models are fundamentally probabilis-
tic, discrete only in velocity, but continuous in space
and time. In contrast, we will use lattice-gas models,
which have a completely discrete phase space and time
and therefore may be viewed as made of ‘‘Boolean
molecules.”

The simplest case is the Hardy, de Pazzis, and
Pomeau model® (hereafter called HPP) which has an
underlying regular, square, two-dimensional lattice
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with unit link lengths. At each vertex, there are up to
four molecules of equal mass, with unit speed, whose
velocities point in one of the four link directions. The
simultaneous occupation of a vertex by identical
molecules is forbidden. Time is also discrete. The up-
date is as follows. First, each molecule moves one
link, to the nearest vertex to which its velocity was
pointing. Then, any configuration of exactly two
molecules moving in opposite directions at a vertex
(head-on collisions) is replaced by another one at right
angles to the original. All other configurations are left
unchanged. The HPP model has a number of impor-
tant properties.® The crucial one is the existence of
thermodynamic equilibria. No ergodic theorem is
known, but relaxation to equilibrium has been demon-
strated numerically.® These equilibria have free con-
tinuous parameters, namely, the average density and
momentum. The equilibrium distribution functions
are completely factorized over vertices and directions,
being independent of vertex position, but dependent
on direction, unless the mean momentum vanishes.
When density and momentum are varied slowly in
space and time, ‘‘macrodynamical’’ equations emerge
which differ from the nonlinear Navier-Stokes equa-
tions in three respects.

The discrepancies may be classified as (1) lack of
Galilean invariance, (2) lack of isotropy, and (3) a
crossover dimension problem. Galilean invariance is
by definition broken by the lattice; consequently, ther-
modynamic equilibria with different velocities cannot
be related by a simple transformation. This is reflect-
ed by the nonlinear term in the momentum equation,
containing a momentum flux tensor, which not only
has quadratic terms in the hydrodynamic velocity u, as
it should be in the Navier-Stokes equation, but also
has nonlinear corrections to arbitrarily high order in
the velocity. However, these terms are negligible at
low Mach number, a condition which also guarantees
incompressibility. The HPP automaton is invariant
under 7/2 rotations. Such a lattice symmetry is insuf-
ficient to insure the isotropy of the fourth degree ten-
sor relating momentum flux to quadratic terms in the
velocity. Finally, crossover dimension is a general
property of two-dimensional hydrodynamics, when
thermal noise is added to the Navier-Stokes equations
or to the HPP version of it. Simply put, the viscosity
develops a logarithmic scale dependence, which is a
dimensional crossover phenomenon, common in
phase transitions and field theory.? In three dimen-
sions, this difficulty does not exist.

Focusing on the isotropy problem, we note that for
the HPP model, the momentum flux tensor has the
form

PaB=p8aﬂ+ Taﬁy:u7u¢+ 0(”4). (1)

Here p =p/2 is the pressure; terms odd in u vanish by
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parity. The tensor T'is, by construction, pairwise sym-
metric in both («,B8) and (y,e). Observe that when
the underlying microworld is rwo-dimensional and in-
variant under the hexagonal rotation group (multiples
of m/3), the tensor T is isotropic and (1) takes the
form

Pue=(p+pu?)d,g+Nuug+0(ut), 2

with suitable scalar factors A and . At low Mach
number this is the correct form for the Navier-Stokes
equation. This observation appears to be new. So, in
two dimensions, we will use a triangular instead of a
square lattice. Each vertex then has a hexagonal
neighborhood (Fig. 1). We will call this model the
hexagonal lattice gas (HLG). The setup is the same as
in the HPP lattice gas, except for modified collision
rules. A suitable set is one given by Harris,!® in con-
nection with a discrete Boltzmann model, supplement-
ed by a Fermi exclusion condition, of single occupa-
tion of each Boolean state. The Fermi-modified Harris
rules are as follows: Number the six links out of any
vertex counterclockwise, with an index i, defined on
the integers (mod6). There are both two- and three-
body collisions. For two-body collisions, we have
(i,i+3) goes to (a) (i+1,i—2) or (b) (i—1,i+2).
Type a and b outcomes have equal a priori weights.
For three-body collisions we have (ii+2,i—2) goes
to (i+3,i+1,i—1). In these rules, it is assumed that
no incident link to a vertex is populated, other than
the ones given as initial states. All other configura-
tions remain unaffected by collisions. These rules are
designed to conserve particle number and momentum
at each vertex, i.e., a total of three scalar conservation
relations. Without three-body collisions, there would
be four scalar conservation relations, namely mass and
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FIG. 1. Triangular lattice with hexagonal symmetry and
hexagonal lattice-gas rules. Particles at time rand ¢+ 1 are
marked by single and double arrows, respectively.
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momentum along each of the three lattice directions.

Note that the HPP rules are invariant under duality
(interchange of particles and holes), whereas the
present rules are not. Duality can be restored by addi-
tion of suitable four-particle collision rules, but we will
not use them here.

We display a variant of this model where at most
one particle is allowed to remain at rest at each vertex.
The rest particles are labeled by an asterisk and the
previous rules are supplemented with (i,i +2) goes to
(i—2,+) and (i) goes to (i+2,i—2). Additional
variations on the model allow one to define a nontrivi-
al temperature. The remainder of this discussion is
concerned only with the basic (HLG) model.

We briefly outline how the hexagonal lattice gas
leads to the two-dimensional Navier-Stokes equations.
A detailed derivation will be presented elsewhere.!!
Let N, be the average population at a vertex with ve-
locity in the direction i The average is over a macro-
scopic space-time region so that N; depends slowly on
space and time variables. We define a slowly varying
density p and momentum pu by

p=3,N. pu=3,Npg,, 3

where c; is a unit vector in the direction i Locally, for
a given p and u, the N,’s can be computed from both
these definitions and the detailed-balance equations at
thermodynamic equilibrium, which are too involved to
present here. This gives a Fermi-Dirac distribution:

N;={1+expla(p,u) +B(p,u)c;-ul}~!. 4)

In general, @ and B satisfy equations with no simple
solutions. However, when u=0, it is obvious by sym-
metry that N,=p/6. Therefore, « and B8 can be ex-
panded in a Taylor series around u=0. The result can
be used to compute mass and momentum flux to first
order in the macroscopic gradients. Second-order
terms in the gradients (viscous terms) are obtained by
Green-Kubo relations or by a Chapman-Enskog expan-
sion.!? The following set of hydrodynamic equations is
thus obtained:

9p/dt+V - (pu) =0, Q)
%(puu) + ﬂza—ig—[g(p)puauﬁ+ o(u")]

9
0x,

P+ (p)V2u,+n,(p) V-u, (6)

9x,

with g(p)=(p—3)/(p—6) and p=p/2. m,(p) and
1,(p) are the shear and bulk viscosities.!?

Deletion of the nonlinear and viscous terms gives
the wave equation for sound waves propagating iso-
tropically with a speed equal to the ‘‘velocity of light”’
(here set equal to 1) over V2, just as for a two-
dimensional photon gas. These sound waves have

been observed in simulations on the MIT cellular au-
tomaton machine by Margolus, Toffoli, and Vichni-
ac.]3 They used lattice-gas models that yield the same
wave equation as above.

The nonlinear system (5) and (6) goes over to the
incompressible Navier-Stokes equation by the follow-
ing limiting procedure: Let the Mach number M
=u/2 tend to zero, and the hydrodynamic scale L
tend to infinity, while keeping their product fixed. As
in the usual derivation of the incompressible limit,
density fluctuations become irrelevant, except in the
pressure term; also, the continuity equation (5)
reduces to V -u=0. Thus, the factor g(p) is to lead-
ing order a constant and may, for 0 < p < 3, be ab-
sorbed in a rescaled time. The resulting Reynolds
number is

Note that Galilean invariance, which does not hold at
the lattice level, is restored macroscopically.

A straightforward lift of the hexagonal lattice-gas
model from two into three dimensions does not work.
The reason is that the regular space-filling simplex
with the greatest symmetry in three dimensions is the
face centered cubic, with twelve equal-speed velocity
directions out of each vertex. Unfortunately, the
relevant tensors such as T,g, in Eq. (1) depend now
on three constants. This induces a spurious, isotropy-
breaking term in the Navier-Stokes equations, propor-
tional to (8/9x,) 42 (no summation on «).

This obstacle may be removed by a splitting method.
The nonlinear term in the three-dimensional Navier-
Stokes equation is recast as the sum of two terms, each
containing spurious elements and each realizable on a
different lattice (for example, a face-centered-cubic
lattice and a regular cubic lattice).

In lattice-gas models, as in general cellular automata
(CA’s), boundary conditions are very easy to imple-
ment. Specular reflection of molecules gives so-called
“free slip”” boundary conditions for the hydrodynamic
velocity u. ‘‘Rigid’’ boundary conditions are obtained
either by random scattering of particles back into the
incoming half plane from a locally planar boundary, or
by specular reflection from a microscale roughened
version of the macroscopic boundary.

We mention some practical limitations on lattice-gas
models. For the hydrodynamic description to hold,
there must be a scale separation between the smallest
hydrodynamic scale and the lattice link length; as we
shall see, this requirement is automatically satisfied.
Lattice-gas models must be run at moderate Mach
numbers M (say 0.3 to 0.5), to remain incompressible,
and to avoid spurious high-order nonlinear terms. For
fixed Mach number, the largest Reynolds number as-
sociated with a D-dimensional lattice with O (N) sites
in each direction is O(N). This is because in our
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units, the kinematic viscosity of the hexagonal lattice
gas is O(1). From standard turbulence theory,'* it
follows that the dissipation scale is O (NY2) in 2D and
O(NY%) in 3D. This insures the required scale
separation at large Reynolds numbers. It would, how-
ever, be desirable to reduce the scale separation, espe-
cially in 2D, to avoid excessive storage requirements
compared to conventional incompressible floating-
point simulations (in the latter, the mesh can be taken
comparable to the dissipation scale).

For this, we observe that the viscosity in the lattice
gas is decreased by a factor P if we subdivide each cell
into a sublattice with links P times smaller. We note
also that the sublattice need not be similar to the origi-
nal lattice. It must have the same collision rules, to
preserve local thermodynamic equilibria, but the
geometry does not matter since macroscopic quantities
may be considered uniform over the cell. Thus, all the
sublattice vertices in a given cell may be regarded as
indistinguishable and can be coded in O(InP) rather
than O (PP) bits; interactions occur between randomly
chosen vertex pairs within cells and between neighbor-
ing cells; the latter being less frequent by a factor
o(1/P).

Simulations of the models discussed here, done on
general-purpose computers and exhibiting a variety of
known two-dimensional hydrodynamic phenomena,
have been made by d’Humieres, Lallemand, and Shi-
momura.!?

We have given a concrete hydrodynamical example
of how CA’s can be used to simulate classical non-
linear fields. We expect that further CA implementa-
tions will be found for the Navier-Stokes equation and
other problems, not necessarily based on thermalized
lattice gases and possibly less constrained than ours.
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