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We report detailed measurements on the weak-localization corrections in well-defined and
-characterized arrays of quasi one-dimensional normal-metal rings. The Bohm-Aharonov oscilla-
tions are very well resolved. Measurements on sets of samples of varying ring size and geometry
determine the distinct effects of these parameters and allow an unambiguous, quantitative compar-
ison to the weak localization theory for ring geometries.

PACS numbers: 72.15.Gd

Al'tshuler, Aronov, and Spivak"? (AAS) predicted
that the weak-localization corrections to the resistivity
of an isolated metal ring produce a resistance com-
ponent oscillatory in the magnetic flux through the
ring. The effect has been observed in experiments on
thin-film cylinders by Sharvin et al.? and then others?
in planar ring arrays,*> and has had further theoretical
substantiation,6' 7 including comprehensive calculations
of the special properties of arrays by Doucot and Ram-
mal.® Many of the general properties have been ob-
served in the first experiments on individual arrays by
Pannetier et al.* Here we describe the properties of
sets of array samples which individually show these
general properties more clearly and completely than
the earlier work and together show the systematics of
the geometry dependence of the arrays. Further, they
are composed of quasi one-dimensional wires whose
properties are independently determined; the oscillato-
ry behavior is particularly well resolved and is mea-
sured over a wide range of temperature and magnetic

L(TH)=IL(T) 2+ 3L, +3L, 2+ Lg% "2

field. Therefore, an absolute and quantitative compar-
ison to the existing theories can be made.

The weak-localization corrections arise from the in-
terference between a backscattered electronic state and
its time-reversed state, so that the interference ampli-
tude is periodic in the two-electron quantum of mag-
netic flux ®,= hc/2e. The processes are distinct from
the recently discovered hc/e effects observable only in
isolated rings,’ although many of the experimental
considerations and some of our general conclusions
apply to both problems. The size of the interference
effects depends on the range of coherence of the
diffusing electrons and is limited by temperature-
dependent inelastic scattering processes, the dephasing
of electrons in different trajectories by a magnetic
field, and spin-flip and spin-orbit scattering by impuri-
ties. It is convenient to consider paired electron states
to define an effective range of coherence for the elec-
trons. Then the ranges for the triplet of spin-1 states
and the single spin-0 state are respectively!%-13

L(T,H)=I[L(T) 2 +2L," 2+ L2112, (1)

L,(T)=[Dr,(T)]"2 is the diffusion distance between inelastic scattering events; diffusion distances for spin-flip
and spin-orbit scattering are defined analogously. The magnetic length for a quasi one-dimensional sample is
L,,Exfid)o/ 7 HW for a “‘wire”” of dimension W transverse to the field. Quasi one dimensionality occurs when all
of the diffusion lengths exceed the wire width and thickness. Then the backscatter interference corrections to
resistance may be expressed as the small fraction change of the ordinary resistance:

.2 R
= LS 3LIF (L)~ LoF (Lo)) @

if the ‘‘wires’’ are thin films of sheet resistance R;. The result of AAS is for a wire turned into itself to form an
isolated ring. For a square ‘‘ring’’ of side S,

sinh(4S/L)
cosh(4S/L) —cos(2n®/®,)

F(L)= =142 Ee_"(“s/“cos(—?'jg’—q)]. 3)

n=1 0

Here ® = HS? and the functional dependences on T and H are suppressed. The series form is always rapidly con-
vergent and invites the appealing interpretation of the sum terms as corresponding to n-fold circulations of the unit
cell by the electrons. It also is apparent that the wire magnetoresistance can be viewed as an envelope (defined, for
example, by the points for ® = ®,/2) on which the oscillations are superimposed. One of the simpler arrays con-
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sidered by Doucot and Rammal is a string or ‘‘necklace’ of rings:

(2S/L )cosh(2S/L ) —sinh(2S/L)

(1/2)sinh(2S/L)

F(L)= 2(2S/L)sinh(2S/L)

Doucot and Rammal have also calculated F(L) for
other kinds of array including a square grid or mesh
although no closed form is obtained in the other cases.
Despite the rather different forms, Egs. (3) and (4)
have many of the same qualitative features. But the
size of the oscillations and their envelope should be re-
duced in the arrays. The difference in the envelopes
vanishes at small L /S, and all results reduce satisfying-
ly to that of a simple wire: F(L)=1. But even in this
limit the array predicts a reduction in the periodic
component [the cos(27®/®,) term] of + for a neck-
lace and + for a square mesh. Because of their com-
plexity, either of the forms may be used to produce
reasonable fits to experimental data on a single neck-
lace sample, for example, if the several diffusion
lengths are used as free parameters. One of the spe-
cial, and demonstrated,'’"12!* properties of one-
dimensional systems is that the magnetoresistance of a
simple wire determines the absolute values of the dif-
fusion lengths. By applying Eq. (2) to analyze
R (T,H) for a wire sample [S=oo, F(L)=1] in this
experiment we measure the values of the diffusion
lengths so that all the parameters relevant to the
weak-localization phenomena are known.

Our samples were nominally pure lithium films
evaporated at low temperature. Details of their
preparation and measurement appear elsewhere.>!2
Lithium, the lightest metal, is chosen for its small in-
trinsic spin-orbit scattering, the spin-dependent
scattering actually observed is small and varies
= 100% from run to run. The films had thickness
d=21+1 nm, and W=55+7 nm with the spread
representing the differences between samples. For
each individual sample the width was defined to =2
nm. W was less than all the characteristic lengths in
the problem, so that the wires were quasi one dimen-
sional with Rg/W=31.5+x1 Q/um. These values
correspond to film sheet resistance Rgp=1.6 Q, or
resistivity p=3.5 pn Q-cm.

Figure 1 includes sketches of the sample geometries
studied. The control consists of long thin film strips.
““‘Necklace’” samples consist of square rings strung end
to end as shown and a ‘“‘mesh’’ is a two-dimensional
square array. The average ring edge dimensions were
§=0.50, 0.71, and 1.00 um. Each sample had a total
length of 1 mm. The necklace and control samples
were composed of 25-um (>> L,,L,) segments ar-
ranged in series and in parallel to produce individual
samples with a few kilohms in resistance. R (T,H ) for
the control sample gave the following values for
the diffusion distances controlling Eq. (2): L,(T)
=(1.85+0.1 pm-K)T™Y;, Ly, =23+02 um; Lg
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=3.1+£0.2 um. To show the dramatic effects of rela-
tively strong spin-orbit scattering, we will also show
data from another set of otherwise similar samples
with smaller L .

Figure 1 shows the magnetoresistance for six sam-
ples at T=0.13 K. At this low temperature the coher-
ence ranges are limited primarily by spin-dependent
scattering but are still large: L;=1.8 um and
Ly=2.23 um, lengths comparable to the circumfer-
ence of the smallest rings. The curve for the control
sample (top) is characteristic of the one-dimensional
localization phenomenon; below it are the curves for
three necklaces and two meshes. The ring-array speci-
mens show oscillations superimposed on an envelope
decreasing with H. The envelopes represent the
coherent effects in the wires comprising the rings and
should be compared to the control curve. The oscilla-
tions represent the extra effects of electrons traveling
the circumference of a ring or rings coherently. The
oscillations vanish at high temperatures or fields
[F(L)— 1] and all the envelopes coincide as they
should. Because the curves do not overlap at low tem-
peratures, it is immediately clear that Eq. (3) cannot
describe all of the phenomena. However, the impor-
tant general features it shares with the array results are
manifested. The oscillation amplitude falls off with
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FIG. 1. The magnetoresistance R (T,H) for T=0.13 K
for the wire control sample (top), three necklace arrays
(next three curves), and two meshes (bottom two curves).
The upper-right-hand sketches define the control, necklace,
and mesh geometry. The size, S, of the unit-cell side is indi-
cated next to each curve. Some of the curves have been dis-
placed vertically for clarity.
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temperature (Fig. 2), field, and cell size in ways which
may be roughly mapped onto each other in accordance
with the symmetries of Egs. (1)-(4). The oscillations
have period ®(/S? within = 1%, this shows that it is
the average cell area which determines the period.® At
high temperatures or fields the oscillations are smooth
and sinusoidal, but at low temperatures and fields the
‘““harmonic’’ structure represented by the higher-order
terms in the summation in Eq. (3) cause a sharpness
in the peaks which becomes more marked for smaller
S and for the meshes relative to the necklaces. The
nth-order terms may be interpreted as representing n-
fold circulations of electrons around a loop or com-
bination of loops with consequent n-fold coupling to
the loop flux. The increased sharpness of the oscilla-
tions for the mesh, which has more such combina-
tions, shows that these extra closed paths contribute
significantly. This difference in behavior and the ap-
parent suppression of the oscillations and their en-
velope occur because the electron coherence length is
so long at this low temperature as to allow a significant
interaction between the array elements.

One quantitative test of the theory is presented in
Fig. 2. The low-field amplitude of the oscillating resis-
tance component is plotted vs T for the three neck-

T(K)

FIG. 2. -The temperature dependence of the oscillating
component of resistance for the arrays. For perspective, we
show, near the top of the figure, data and the weak-
localization theory for the total magnetoresistance for the
simple wire sample used as a control. The oscillation ampli-
tude for the three necklaces of cell size S appear as dots; the
data for the mesh with §=0.7 um is represented as a
dashed curve. The nearby solid curves correspond to
S =0.7 um and are the predictions of the single-ring calcula-
tion (curve 4) and of the array calculations for a necklace
(curve B) and a mesh (curve C). The nominal errors in the
data are comparable to the dot size; the error bar at bottom
right is the uncertainty in the theoretical curves 4 -C at the
highest temperatures.

laces and for the mesh with $=0.71 um (dashed
curve). The resistance change for the simple wire and
the theoretical curve for this case also appear near the
top of the figure. For simplicity, theoretical results for
the oscillation amplitude are shown for S =0.71 um
only. At high temperatures, the necklace and mesh
data approach each other and the single-ring theory
(solid curve 4 ). At low temperature, the single-ring
theory seriously overestimates the oscillation ampli-
tude and, of course, does not predict the difference
between the two arrays. The array theory for the neck-
lace (curve B) and for the mesh (curve C) agrees with
the respective data at low temperatures but falls factors
~ 4 and — 8 below the data at high temperatures. Be-
cause of the strongly exponential nature of the oscilla-
tion amplitude at small L, the disagreement is in a
sense minor. An increase of the diffusion lengths by
only 15% brings the necklace data into agreement for
all T for all of the necklace samples. However, this is
not justified by our measurements and to achieve the
same agreement for the mesh data would require a
larger (25%) “‘adjustment.”

Fits to magnetoresistance curves like those in Fig. 1
provide another quantitative test. The necklace theory
produces reasonable facsimiles, with all qualitative
properties and the systematic geometry dependence
observed at this low temperature regarding both the
oscillations shape and the envelope. However, the
shape of the low-field (therefore, most structured) os-
cillations is not precisely produced by the theory. This
is in modest disagreement with earlier work>? where
the diffusion lengths were used as free or almost free
parameters. The situation is further illustrated by the
data in Fig. 3 which show data analogous to those in
Fig. 1 but for a set of samples with somewhat stronger
spin-orbit scattering. The data are of independent in-
terest because they show the reversal in oscillation
phase evidenced previously only by the behavior in the
opposing limits of weak and strong spin-orbit scatter-
ing. The reversal is related to the well-known ‘‘spin-
orbit dip’’ observed in the magnetoresistance of homo-
geneous systems’ and in the envelope in the figure. It
occurs at a field which is dependent on the unit-cell
size as well as the diffusion lengths. Both the single-
ring and the array theories predict such behavior with
approximately the right 7, H, and S dependence.
However, exact fits are never obtained and the dif-
fusion lengths corresponding to the best fits generally
are much too large. For the rather demanding case in
Fig. 3, even the necklace theory fails rather substan-
tially by this kind of criterion, but it always produces
an approximation to the data which is clearly superior
to the single-ring theory at low temperatures.

In summary, the weak-localization theory as
represented by the array work of Doucot and Rammal
produces all the general features of the effects ob-
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FIG.3. R(T,H) at T =0.13 K plotted analogously to Fig.
1 for a second set of samples with a higher spin-orbit scatter-
ing rate and a consequent S-dependent reversal of the oscil-
lation sign. The top three curves are for the necklace
geometry; the bottom curve is for a mesh.

served in our ring arrays, including those specific to ar-
rays as distinguished from a single ring and such a re-
markable detail as the phase reversal shown in Fig. 3.
The theory does not appear to produce a precise repli-
cation of our data within the experimental error and
systematically underestimates the oscillation amplitude
at small coherence range. Although the latter may
arise from a small, undetermined systematic error in
our diffusion-length determinations, the evidence in-
dicates a failure of the theory in this regime where, in
fact, the single-ring theory becomes more accurate.
But the array theory is quantitatively accurate to an ex-
tent of practical importance. Our results indicate that
determinations of the diffusion lengths from either the
array envelope (preferably) or the oscillation ampli-
tude (if one is not too near the phase-reversal region)
would be in error by at most 25%. The application of
the single-ring theory to interpret, for example, the
envelopes in Fig. 1 would produce much larger errors
since the suppression of the envelopes is such a large
effect. One should note that this suppression is a rath-
er general effect arising from the nonlocal nature of
the conductivity at small scales. Analogous effects will
influence related measurements like those on a small
wire or ring with leads attached.? Our results may be
used to estimate the size of such distortions.

We gratefully acknowledge technical discussions and
assistance from G. Kaminsky, E. Abrahams, R. Bhatt,
P. A. Lee, Y. Imry, and especially R. Rammal and
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