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Coherent Backscattering of Light by Disordered Media:
Analysis of the Peak Line Shape
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Recent experiments have confirmed that coherent effects in the multiple scattering of light affect
the angular dependence of the intensity reflected by disordered media. By considering the con-
structive interferences between time-reversed paths of light in a semi-infinite medium, ~e analyze
the experimental line shape of the albedo within the diffusion approximation and explain the ob-
served effects of polarization.

PACS numbers: 42.20.—y, 71.55.—i

The propagation of a wave in a dense distribution of
elastic scatterers is a difficult problem to handle in the
framework of the multiple-scattering theory. The clas-
sical approach, which assumes that phases are uncorre-
lated on scales larger than the elastic mean free path l,

leads to an intensity transport equation of the
Boltzmann type in which any interference effects are
neglected. In the simple regime where the length or
time scales are larger than l or r (r = l/c, where c is
the wave velocity), this equation reduces to a diffusion
equation with a diffusion constant D = lc/3. The clas-
sical approach is generally well justified for study of
the intensity scattered from a bounded, weakly disor-
dered medium. However, it must be corrected when
the wave emerges from the medium around the back-
scattering direction (i.e. , the direction opposite to the
incident one). In this case, constructive interferences
arise and must be taken into account in order to ex-
plain the enhancement of the backscattered intensity
with respect to the classical prediction. This phe-
nomenon has been recognized almost independently in

two different fields. In condensed-matter physics, it is
the basis of the weak-localization regime for electrons
in impure metals, '2 where the quantum correction to
the diffusion constant is obtained from the pioneering
work of Langer and Neal. In optics, it was first con-
sidered by de Wolf' for electromagnetic waves pro-
pagating in turbulent atmosphere. More recently, this
effect has been directly demonstrated by three experi-
ments~s which show that the intensity of light scat-
tered from a concentrated aqueous suspension of latex
microsphcrcs presents a sharp peak centered at the
backscattering direction. The sharpness of this peak as
well as the effects of light polarization are typical
enough to call for a detailed analysis of this coherent
backscattering effect, which is the purpose of this
Letter. Two previous storks must be mentioned here:
one9 about the contribution of double scattering to the
backscattering intensity enhancement and another one
by Golubentsev'o who discusses the reduction of this
peak due to the motion of impurities and the gyrotropy
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FIG. 1. Geometry used for the calculation of the coherent
albedo, showing t~o interfering light paths.

of the medium. We shall follow here the features of
his analysis.

The basis of the interference effect in multiple
scattering is very general. We assume that the waves
are of scalar nature (the important effect of light polar-
ization will be discussed later). Consider a sequence
of n scattering events characterized by the wave vec-
tors kt, kt, . . . , k„=kf, where k& is the wave vector
after the jth scattering event and k, and kf stand for
the initial and final wave vectors. In classical transport
theory all n-order sequences are assumed to be un-
correlated as a result of the random nature of the dis-
tribution of scatterers. However, any given sequence
and its time reverse k, , —k„&, —k„2, . . . , —k&, kf,
where the light is scattered by the same centers but in
opposite order, can interfere constructively for a spe-
cial choice of kf relative to k;. The total phase shift
between the two corresponding partial waves is simply

q (rt —r„), where q is the transfer wave vector
k, + kf and rt and r„are the positions of the first and
last scattering centers. For the backscattering situation
(kf k') these two partial waves have the same am-
plitude and phase and add coherently. If 8 is the rela-
tive angle between k, and kf, the coherence is lost for
angles 8 larger than X/~r& —r„~, where X is the
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wavelength. Since the average ~alue of Ir~ —r„l for
the shortest sequence (n=2) is the mean distance
between two scattering events, i.e., the elastic mean
free path i, one expects" the reflected intensity to in-

crease by up to a factor 2 inside a cone of angular
width of order A./i. More quantitatively, the interfer-
ence correction to the multiple-scattering contribution
of all paths of n steps from rt to r„will be obtained by
a weighting of the corresponding incoherent intensity

I

by a factor cos[q (r& —r„)]. It is now well known that
these interferences reduce the bulk transport coeffi-
cients, ' like the diffusion constant D. Here, we con-
sider their consequence on the albedo problem.

We study the light reflected by a semi-infinite
scattering medium occupying the half space z ) 0 (Fig.
1). We define the albedo n(k;, kf) as the ratio of the
emergent flux per unit solid angle dQ and unit inter-
face area around the direction kf to the incident ener-

gy flux. a is given by

o. (k, , kf) = (c/4mi2) dz dz'd pexp( —z/poi) {1+cos[q (r —r')] IQ(r, r')exp( —z'/JMi),

where z and z' are the projections of r and r' on the z

axis, p is the projection of r —r* on the interface plane,
while p, o and p, are respectively the projections of k,
and kf on the z axis. The physical meaning of the dif-
ferent terms appearing in (1) is the following:
i 'exp( —z/p, oi) is the ratio to the incident flux of
the energy scattered per unit time and unit volume at
point r. Q(r, r') is the Green's function which
des
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enough from the interface, Q(r —r') obeys a diffusion
equation with the boundary condition Q( —zo) =0,
i.e. , with a trapping plane located at —zo (for pointlike
scatterers, zo is about 0.7i). Q (r —r') is then given by

Q(r —r') = Qo(r —r') —Qo(r —r").

cribes the light transport from a point source locat- Here, Qo is the homogeneous solution of the station-
t r to r'. It is given by the ratio of the energy den- ary diffusion equation, Qo(r —r') = [4~D{r—r'{]
at r' to the source production rate of energy. (i.e., the "3D Coulomb potential"), where D=ic/3 is

4m)dz'/i is the fraction of the energy density at r the diffusion constant'4 of the light, while r" is the
ch contributes to the flux scattered per solid angle image of r' in the mirror plane in —zo. Physically, the

around kf, while e 'i~' is the part of this flux image term in Eq. (2) ensures that only paths not
ch emerges without being again scattered. Finally, crossing the trapping plane are selected in the evalua-
factor 1+cos[q (r —r')] accounts for the interfer- tion of Q since the emergent light is lost for the medi-
c effect. Note that since this interference is ir- um.
vant for single scattering, Eq. (I) is only valid for Let us now simplify the expression for o. by assum-
multiple-scattering part of the albedo. ing that in Q(r, r'), r and r' are located on the same
he problem of the calculation of Q(r, r') has been plane z= i This is justified by the exponential terms

died in classical transport theory. '3 From the inten- exp( —z/p, oi) and exp( —z'/p, i). For quasinormal in-
transport equation, it can be shown that far cidence and emergence (p, ——p,o—- 1), the albedo (1)

becomes

(8) = (3/4~'i) d'p[I+cos(q, .p)]lp ' —(p'+~') (3)

where a = 2(i+ zo) and q~ is the component of q normal to the z axis, with q~ = 2m 8/AThe in, .tegration in Eq.
(3) leads to

n(8) = (3a/4n i) {I+ [1—exp( —q, a)]/q, a I. (4)

This expression exhibits the following features: (i) For 8 = q„=0, i.e., right in the backscattering direction, the
albedo is exactly twice the incoherent value o.;„,obtained for "large" angles. (ii) The angular width in which the
coherent effect is observable is of order X/2~l. (iii) Close to the exact backscattering direction, the albedo varies
linearly, ~(8) =o.;„,[2 —27ri+zo/%{8{], so that, , near 8=0, the line shape is triangular. The exact expression of
a(8) derived by going beyond the previous approximation is given by

r

n(8) = 1+ +, I+3 2zo 1

I+q~l 2

1 —exp( —2q izo)
q„I

which preserves the previous features. This expression is in principle only valid for isotropic scattering. An ap-
proximate extension to the experimental case of anisotropic scattering is obtained' by replacing I everywhere by
the transport mean free path i". In Fig. 2, we thus compare an experimental line shape with the predicted one, ob-
tained by a convolution of Eq. (5) with the relevant instrumental profile. No adjustable parameter is used, since
i was determined by a different experiment. ' lf we consider the approximate nature of the diffusive behavior,
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the agreement between the t~o curves is remarkable.
The small-angle linear behavior of n(8) is the signa-

ture of the large-distance asymptotic diffusive be-
havior of Q(r —r') in the presence of the interface.
Because of the image term in Eq. (2), the p

' law
valid for Q in the bulk is modified to p 3. The surface
element in the integration over the separation plane
provides an additional factor p which leads to a p
behavior whose Fourier transform yields the linear
dependence at small angles. . It should be noted that a
similar analysis in other dimensions yields the same
triangular line shape. '7

Expression (3) shows that the coherent contribution
to the albedo is nothing but the small-angle "structure
factor" of the correlation function Q(r —r') given by
Eq. (2). Therefore, the smaller the angle 8 is, the
larger the maximal size of the probed diffusion paths
is. We can be more explicit by considering the contri-
bution to the albedo of paths of a given length L (this
contribution is also of interest since it can be measured
experimentally, e.g. , by a pulse experiment). Within
the previous approximation, z=z'=i, justified for
large L, the contribution of these loops to Q (p) is

Mz
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FIG. 2. Comparison between experimental and theoreti-

cal line shapes for the coherent backscattering. The experi-
mental recording is taken from Ref. 8 [Fig. 3(a)]. The inset
represents the bare theoretical curve taken from Eq. (5) with
A. = 0.515 p, m and I'= 19 p, m. The full line is the theoretical
prediction obtained by the convolution of this previous
curve and the instrumental profile.

1 —exP[ —3(i +zo) /Li] exp( —3pz/4Li)
Q(p )= 4„i I L

The p Fourier transform of Q(p) is a Gaussian func-
tion. Its width, of order A/(LI)'iz, results from the
diffusion process parallel to the interface, while the
I/L3iz dependence of its amplitude is the signature of
a one-dimensional random walk with a trap. ts Thus, at
a given small angle 8, only the paths of length L small-
er than Xz/l8z contribute significantly to the coherent
albedo. In this respect, A. 2/D8z is analogous to the
phase coherence time ~& introduced by Khmelnitskii
(see Ref. 1).

The previous results have been obtained within the
diffusion approximation. Nevertheless, it must be
noted that an expression of the coherent part of the al-
bedo can be carried out from a direct nth-order
multiple-scattering theory by means of an expansion in
maximally crossed diagrams. '5 As expected, we find
that the angular width and amplitude of the coherent
nth-order contribution vary respectively as I/n'i2 and
I/n3iz. It is worth noting that in recent experiments
(see Fig. 2), the coherent albedo still varies for angles
about 10 times smaller than the total measured cone
aperture. This sho~s that in such experiments, the
light explores the medium along paths of length larger
than about one hundred mean free paths.

So far, we have considered the case of scalar waves.
However, the importance of light polarization has been
demonstrated in recent experiments. When the
analyzed polarization is parallel to the incident one

(parallel configuration), the backscattered intensity for
8 =0 is about 1.7 times larger than the incoherent in-
tensity (see Fig. 2). On the other hand, the enhance-
ment factor in the crossed configuration is about 1.3.
This difference can be understood from the form of
the amplitude Rayleigh scattered by an individual
center. It is proportional to (kxPO) xk—= M(k) Po,
where Po is the incident polarization, k the emergent
wave vector, and M(k) a 3X3 symmetric matrix.
Thus, for the n-scattering sequence (k, , ki, . . . ,

k„ i, k~) the emergent polarization state is
P„=[kf x (M„P&)x kf, where P; is the incident po-
larization and M„ is the ordered product
gg:t M(k„J), while its time-reversed counterpart is
P„'= [kfx(M„'.P, )]xkf. Since the M(k)'s are sym-
metric, M„' is the transpose of M„. Let us denote by
P„~~ and P„j the components of P„respectively paral-
lel and perpendicular to P, . We have P~~ = PI~, so that,
in the parallel configuration, the coherence is totally
maintained for any loop and the expected enhance-
ment is, as previously noticed, 7 a a factor 2. Further-
more, because we expect the large-distance behavior
of the intensity in any polarization state to be dif-
fusive, the line shape at small angles should be similar
to that given by (5). The case of perpendicular polari-
zation is different. Except for n = 2, P„~ differs from
P„'~ and one must determine the coherence ratio,
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g(ii) = (P„~P„'~ )/(P„'~), averaged over all the n-
scattering sequences, in order to estimate the enhance-
ment factor at 8=0. Within the assumption of uni-
form distribution for the successive k, 's, which for
isotropic scattering should be true in the limit of large
n, we can derive linear recurrence equations involving
the different averages (M„&M~&) . Their solution
leads to an exponential decay

Finally, we estimate the desired enhancement factor
for crossed polarization to be about 1.5 by summing
over n the scalar n-scattering contribution weighted by
C(n). We thus understand the existence of a partial
coherent effect in the crossed configuration (the
difference between 1.3 and 1.5 is likely due to the vari-
ous approximations in our calculation).

In the present analysis, we have presented physical
arguments to explain the observed coherent back-
scattering peak in the albedo of disordered media.
This peak is the last coherence effect which survives in
the presence of complete disorder. It is built up by
constructive interferences in the random walk of light,
the same phenomenon responsible for the weak locali-
zation of electrons in bulk impure metals. On the oth-
er hand, the particular peak line shape, valid for two
and three dimensions, is specific to the presence of an
interface and could not be obtained from bulk con-
siderations. It results from the addition of all contri-
butions of nth-order multiple scattering, and the tri-
angular singularity at 8 = 0 can be reached only in the
limit of n going to infinity. Any process which intro-
duces a limitation in the order n of the multiple
scattering or in other words in the total length of the
random paths will round the peak. Finite-size confine-
ment, absorption of light, or modulation of the light
intensity are good candidates for these rounding
processes. '5 Furthermore, since the peak line shape
gives direct information on the transport of light in a
random medium, an extension of this analysis towards
non-Euclidean random walks is of great interest and
will be reported in a forthcoming publication. '5 These
considerations show the interest in this kind of experi-
ment and analysis for the characterization of random
media.
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