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Equilibrium in Periodically Time-Dependent Two-Level Systems
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The Floquet solution for the evolution operator of a periodically time-dependent two-level Ham-
iltonian provides an effective Hamiltonian that can be used to examine the equilibrium properties
of the system. In one example, calculations with a model Hamiltonian show that identical equilibri-
um properties are predicted in the laboratory frame as in a time-dependent interaction frame. A
second example considers the changes that arise when the model Hamiltonian contains an explicit
periodic time dependence.

PACS numbers: 05.30.—d, 33.25.—j, 73.40.6k, 76.20.+q

I report in this Letter on the role played by the ef-
fective Hamiltonian for a system of interacting two-
level particles subject to periodic, time-dependent
external forces. The effective Hamiltonian character-
izes the evolution of the system over one period in
time and is itself time independent. Thus, one can ap-

ply the methods of statistical mechanics to the effec-
tive Hamiltonian and thereby elucidate the equilibrium
properties of the system. This procedure provides an
avenue for studying time-dependent many-body sys-
tems.

There exist two main uses for two-level systems as
models of nature. In one case the systems do not ex-
plicitly depend on time; here one is concerned primari-
ly with the equilibrium properties of many-body sys-
tems. In this connection I note the current interest in
the effects that a condensed phase has on tunneling
dynamics. ' The second use of the two-level model is
as the prototype for the interaction of radiation with
matter. Here, in contrast, the Hamiltonian does ex-
plicitly depend on time and one is primarily interested
in the evolution of the coherently driven systein. 3 The
question arises: How does one combine the statistical
mechanics in the first case with the time dependence
of the latter in order to address many-body systems
subject to external time-dependent forces't

The question just raised has traditional roots in mag-
netic resonance, originating with the application by
Redfield4 of spin thermodynamics in the rotating
frame. Subsequent developments in magnetic reso-
nance brought about the prospect of high-resolution
spectroscopy of solids via pulse techniques. 5 For this
purpose one is primarily interested in the short-time
( t —T2) evolution of the pulsed spin system. Howev-
er, it is natural to inquire further about the long-time
effects of the pulse sequence. This requires exten-
sions of Redfield's ideas and has raised questions re-
garding the proper way that this should be done. 6

These ideas are not limited to spin systems. The
methods of magnetic resonance appear in other fields
as well, for instance in the studies of electric dipole
echoes in glasses. 8 The advent of the femtosecond

Peq= 1 —PeqH (3)

in the high-temperature approximation. " Given an
initial state p(0) = 1 —pttoti I„, the conservation of en-
ergy allows us to determine p, q in terms of p; and im-
plies an equilibrium magnetization along the x axis of

M,q/M; = (1+to)„/toi) (4)

laser, with pulse lengths short compared to optical de-
phasing times, will surely see the investigation of the
optical properties of condensed phases by multiple-
pulse interactions with laser radiation, again raising
the above question.

The purpose of this Letter is to examine the equi-
librium properties of a model time-independent Ham-
iltonian in an interaction reference frame. The transfor-
mation to the interaction frame imparts a periodic time
dependence to the Hamiltonian. An application of
Floquet's theorem in this frame produces a time-

independent effective Hamiltonian It is im. portant here
that the equilibrium properties predicted by the effec-
tive Hamiltonian are identical to those determined by
standard methods in the laboratory frame. This result
serves as a basis upon which to examine the effects
that are introduced when the laboratory-frame Hamil-
tonian contains time-dependent terms, due for exam-
ple to coupling of a radiation field.

Let us consider the model Hamiltonian

H = —to i I„+H2o,

containing a field term of magnitude cot and an interac-
tion term

Hp()= X,. (ito;t J6(2I,'1~+I',P i +I', lJ ),

that transforms under rotations as the M = 0 term of a
second-rank spherical tensor. In magnetic resonance
terms this represents a dipolar-coupled spin system in
a transverse magnetic field. In the laboratory frame it
is a straightforward procedure to calculate the equi-
librium properties of the system. 'o If we assume that
0 allows no independent commuting observables be-
sides itself, the equilibrium state is
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where ru( =Tr(H2O)2Tr12
We seek the analogous result in an interaction frame defined by

pn (t) = exp(i~ I /2)exp( —
icosi I t) p(t)exp(icosi I„t)exp( —im I /2).

The additional tilt by 7r/2 about the y axis is merely for mathematical convenience. The time dependence of this
unitary transformation yields

H, (t) =(-', )'t'e "' 'H„--,'H„+( ', )'t'-e"' 'H,

for the Hamiltonian in the interaction frame. Note that in this frame, the field term no longer appears.
How one determines the equilibrium properties of the system is not clear on account of the time dependence of

the Hamiltonian. The periodicity of Hz (t) allows us to write the evolution operator as

V(t) =P(t)e
where P(t) has the same periodicity as Htt (t), but H, the effective Hamiltonian, is time independent Thi.s suggests
that H be used to predict the equilibrium state; however, H is not uniquely defined. To any H we can add an
operator N, obeying [H,N] =0 and the constraint that any eigenvalue of N equals m2m/v for some integer m, and
satisfy Eq. (7) by defining a new operator P'(t) =P(t)e'~'. Here r is the period of Hz(t). The ambiguity of H
can be resolved7' by consideration of the long-time average of an observable Q;

(Q) = lim (1/T) &~ Tr[P (t)QP(t)e ~'p(0)e'0')dt, (8)

where the properties of the trace allow us to alter the occurrence of P i(t) from its expected position. This has the
same form as the time average for a conservative system, except for the periodic time dependence of the apparent
observable, P~(t) QP(t) For the .conservative system, the time average picks out the constant component of the
integrand, that is, of the frequency spectrum that the differences, X, —X,, of the eigenvalues of the Hamiltonian
define. Above, not only will the constant component contribute to the time average, but also those components at

k2m/v, unless the spectrum of eigenvalue differences lies entirely within the range

If this is the case then, in analogy with the relationship between time and ensemble averages for a conservative
system, we can define the equilibrium state

pqq
= exp( —PcqH) (10)

in which the observable I, takes on the value'2

M„=Tr [ [P'(t) I,P(t) ),„p„j.
Here, the average represents the constant component of the apparent observable, P (t) QP(t). If H does not satis-
fy the conditions of Eq. (9) then one of two recourses is possible: Either an appropriate ¹isfound so that H+ N
satisfies this condition or a transformation is made to an interaction frame in which the Hamiltonian has a smaller
range of eigenvalues.

For the present application it remains to find Hand therewith Mcq. One procedure is to develop a series expan-
sion H = QHt"1, the first term of which is the average Hamiltonian 5A set of r.ecursion relations for the Ht "~ ap-
plied to the present problem yields'b

H = —, H20,(I)

H = —(3/16')i) [H22, H2 2]+ (1/4o)i) (—', )'t'[H2O, H22 —H2 2],
(12)

a series that develops as powers of co„,/co, . Equation (11) and the effective Hamiltonian yield M,~/M,
= (9co(,J16coi)(i+27&v„,/Scapi)

' in stark contrast to the laboratory-frame prediction of Eq. (4). This discrepancy
can be corrected by the following observation. If, for the moment, we consider only Hi'i there exists a second
operator that commutes with H ' —namely I, . Adding the correction term H removes the commutability of I, ;
ho~ever I, can itself be corrected so as to commute ~ith 0 ' +0 '. As the n-th order term is added to the
series for the effective Hamiltonian, so an n-th order term can be added to I, to ensure that the two operators com-
mute to order n +1. The implication is this: 0 and 0 are both conserved operators and the assumption that 0
alone determines the equilibrium state is invalid. Furthermore, because 0 is assumed to allow no other conserved
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observables, 0 must be dependent on H. This being
the case, the equilibrium state in the interaction frame
is determined by 0, just as it is in the laboratory
frame. Naturally, the predicted equilibrium proper-
ties, such as M,~, are identical in the t~o frames.

I turn next to a modified version of the Hamiltonian
in Eq. (1) that is time dependent:

At t = 2~ the solution is

Up(2~) =exp(ill, r)exp( —i&1„)exp(ill,T)

=exp(i' n 12'), (is)

where n represents the effective axis of rotation and
the frequency satisfies

H(t) = —rui(t)I„+51, + H2p. (13)
cos(cu, ~) = cos(h~)cos(8/2).

One application in which this Hamiltonian arises is for
pulsed spin locking in magnetic resonance of solids. 6

Here the field is a sequence of puises,

cubi

( t)
=8/5(t —2(k —l)~), with a tip angle of 8 and a

spacing of 27 Ag. ain we transform to an interaction
frame, the toggling frame, via a unitary operator satisfy-

1ng

dUp/dt = —i [pit(t) —51,] Up.

When cu, = mn/nr, m complete rotations are made in

n periods of », and thus the toggling frame is periodic
with period n2v. If for a particular combination of 6
and 8 the cyclic condition does not hold, let
5 = b, tt +5, where b, tt does satisfy the condition.

In order to simplify the determination of H, let us
tilt the toggling frame by an angle a, with tana
= tan(8/2)/sin(b, i ), so as to align fi with the z axis.
The Hamiltonian in this frame is

Htt (kj ) = XL X~ disap (a)HLtirexp[ipi, M2~(k —1+j )],
in terms of the Wigner matrix elements and the HL~ defined by

e ( 51, +H2—p)e '= XL X~ d~p (a)HLtir.

The discrete nature of the pulses is responsible for the appearance of the Hamiltonian above. The index k labels
the kth (of n) period of 2i that comprises the cycle. The index j equals 0 before and 1 after the pulse that occurs
in the middle of each period. The integrations necessary to evaluate the effective Hamiltonian series, via the re-
cursion relations of Ref. 7b, reduce to sums in the present situation and are evaluated following the standard rules
for summing power series. The result is

H = XL dpp (a)Ht p= —5cosal~+ 2 (3cos a —1)Hpp, (19)

H = r XL X~~p XL, [dpp (a)H, ,d~p (a)HLtit]cot(cv, Mr)

+~$L $~)p XL [d~p(a)HtM, d ~ p(a)H ~]cot(p),M7)'
+ r XL XM~p XL d+g —~ p (a)HL +g —~ dMp (a)H cot(Q) MT). {20)

ization shown in Fig. 1. The third term in Eq. (20)
also governs the decay dynamics and predicts a 7

dependence of the relaxation rate for the three-pulse
cycle. For longer cycles, the quasistationary state will

persist to second order; however, it will decay due to
terms in higher-order corrections to H. For example,
with the four-pulse cycle the quasistationary state de-
cays at a rate proportional to r4 because of terms in
Ht»

The pulsed spin-locking experiments of Erofeev,
Feldrnan, and co-~orkers bear out these predictions.
They find that certain combinations of 8 and b, lead to
a v. dependence of the relaxation rate, namely those
satisfying a&, = m/37, while other combinations lead to

or v dependences. In a related area, similar
phenomena have been observed in the pulsed spin
locking of a nuclear quadrupole resonance by Marino

We are now in a position to examine the equilibrium
state implied by the effective Hamiltonian of Eqs. (19)
and (20). The first-order term of H allows two con-
stants of the motion, namely I, and H2p, and conse-
quently leads to the prediction of a quasistationary
state having separate temperatures for the field and in-
teraction terms. Figure 1 shows the expected depen-
dence of M„on the pulse angle, in agreement with ex-
perimental values. 6' Upon the addition of Hi2i to the
effective Hamiltonian, these two constants of the
motion could be corrected to commute with Hi'i
+ Ht2i if it were not for the third term in Eq. (20). It
is because the third term causes n-quantum transitions
that the corrections are not possible. This term is
nonzero only for the three pulse cycle-(co, —n/3~) In.
this situation the quasistationary state ~ill decay to an
equilibrium state characterized by H and a single
temperature ' and ~ill lead to the equilibrium magnet-
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FIG. 1. The dependence of the average value of the ob-
servable I„(i.e., the magnetization) on the pulse angle, &,

for the quasistationary and equilibrium states of a system
described by the Hamiltonian of Eq. (13). For this example,
d = 0 and cv] = 23 5'70 rad/sec.

and Klainer. '3 The above methods provide an ex-
planation of these results as well. t~ In conclusion, the
discussion presented in this Letter suggests that these
phenomena are general in nature and should be ob-
servable in other two-level systems.
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