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Novel Relativistic Effect Important in Accelerators
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It is shown that a bunch of charged particles following a curved path in a magnetic field is subject
to a force due to its own electromagnetic field. One aspect of this is a "centrifugal" force acting on
individual particles in the bunch. A resonance mechanism, capable of disrupting the beam at mod-
est currents, is given as an example of the importance of this force. The theory is tested with ob-
servations from the Cornell Electron Storage Ring. This force will cause important modifications to
existing theories of accelerator stability.

PACS numbers: 03.50.0e, 29.20.Lq, 41.40.+ t

For charged-particle beams in circular accelerators at
high energies it has been customary to neglect space-
charge forces because of the near perfect cancellation
between electric and magnetic forces. By this assump-
tion any current-dependent force can only result from
cavities, discontinuities, resistive walls, or other near-

by material. Here it will be shown that there is an im-
portant deflecting force, related to synchrotron radia-
tion, which is present even in the absence of such ma-
terial. Nearby walls do, however, influence the force
appreciably.

Assume initially that moving charges are uniformly
distributed with hne density X along a circle C of ra-
dius R. We will calculate the force on any one of these
charges and then argue that almost the same formula
can be applied to not-too-short bunched beams by al-
lowing the local line density ii. (sit) to depend on sz,
the distance from the center of the bunch. Like all
quantities in this paper, sz is measured in the laborato-
ry frame.

The fields acting on a unit charge at a field point P
due to the presence of charge X ds~ at a source point P'
at an earlier time are given by the Lienard-Wiechert
formulas2

dE= A, dstt n —v' nx I(n —v') x a'I+
4&~0 72D3I2 D I

dB=nx dE,

v= (I+5)n+5,
v'= (1+&')n+6',

(4)

(5)

where

d n=h' n=0.
Note that 5' is equal to —D.

We concentrate on the radial component dF of the

where

D=1 —n v'=1 —Pcos —81

2

—y '/2+ (&/2)'/2. (3)

With s being the arc length from source point to field
point, the quantities 8 = s/R, l, and n are respectively
the angle, distance, and unit vector from P' to P.
With c = 1 the velocities at P' and P and v' and v and
P and y have their usual relativistic meanings. Typical
numerical values are given in Table I.

The second term of (1), being proportional to the
acceleration a'=it2/R, is the essential new ingredient
present because the path is curved. Since v, v', and n
are all more or less parallel and because the field at P
is approximately a transverse plane wave the electric
and magnetic forces approximately cancel. In the in-
terest of handling this cancellation explicitly, we intro-
duce small quantities 5, 5', 5, and 5' such that
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force per unit charge due to these fields. It is given by

g ds
dI' = [ —n(5'+d, .l')+I'81+n(Q'n. a' —5 I'n a'+5'h a')+h'Sn a' —a'5g'

4meo.D3l y I

I—
4meoR

For quantitative comparison with observations this expression can be integrated numerically over actual transverse
and longitudinal distributions. For purposes of discussion this can be done analytically for a beam of zero
transverse extent. In the change of integration variable from s~ to 8 the Jacobian factor

~ ds~/d8 ~

= RD reduces the
highly peaked structure of the integrand by one power of D, yielding

~ „(j,de I tn(e „/4)F= (8)
4~~0 " t'min D'I 2p' tan(8 ;„/4)

The first (large) term here comes mainly from the
second term of (1). The limits refer to front and back
of the bunch. They are not critical in the evaluation of
the second (small) term.

This expression exhibits a logarithmic divergence at
8 = 0, but that should not be surprising as the same
divergence would appear in elementary electricity and
magnetism in a calculation of the "hoop stress" of an
infinitely fine charged hoop or a current loop. This
divergence is due to "nearby" charges and is removed
when the beam is given transverse size. This can be
done analytically3 or numerically. We do the latter and
obtain results such as those shown in Fig. 1. Since the
divergence is only logarithmic the results are not too
sensitive to the assumptions. The value of the square
bracket in (8) is about 6. But this divergence accounts
for the feature of Fig. I that F falls off quickly as the
field point P moves transversely off the orbit circle,
i.e., the radial position r or the vertical position z devi-
ates from zero.

Coherent synchrotron radiation has been considered
by Schwinger4 and screening effects of nearby walls by
him and by Nodvick and Saxon. 5 They calculated only
the longitudinal force while the present paper deals

I
with the transverse force, which prevents direct com-
parison of the results. In its simplest form the present
calculation applies to free-space orbits, but to relate to
experiment it is necessary to understand the screening
due to inevitable nearby walls. For this paper we limit
the discussion to features for which this screening can
be neglected.

From the previous discussion it can be seen that an
appreciable portion of the transverse force being stud-

ied comes from nearby charges and could almost be
said to be nonrelativistic in origin. The logarithmic
singularity entails a rapid spatial variation over dis-
tances comparable with the transverse beam size. A
consequence is that, for slender beams, the force can-
not be fully screened by the presence of walls which,
though nearby, are distant relative to the beam size.

For this discussion and for analyzing resonances
below, it is useful to introduce the following rough
parametrization of the data of Fig. 1:

F= (Ro+ Rir + R2r ) (1+Z2z ). (9)

TABLE I. Numerical values.
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FIG. 1. Dependence of the transverse force F on radial

position r and vertical position z.
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This gives the transverse dependence of the force per
unit charge at the bunch center longitudinally. Values
of the coefficients are given in Table I. It is the coeffi-
cients Rz and Z2 which govern the rapid variation near
the peak (due to the logarithmic singularity), which
are insensitive to screening, and which will dominate
the subsequent discussion. The other coefficients,
strongly influenced by screening, will be unimportant.

We turn next to the observable effects of the force
per unit charge F. Close to their previous meanings,
but referring now to the nominal rather than the actual
bunch center, the variables r, z, and s = Rcoot locate a
particle in space and stt locates it longitudinally within
a bunch. Focusing elements cause these variables to
oscillate (in the absence of perturbation) according to

r, z, ~a = ~szs eOS( QrzssssOt ) (10)

2

F (r,z)exp-
pc/e , D(.), (»)

20L

where e is the charge and p the momentum of the par-
ticle. The factor D(s) alternates between 0 and I as
the particle leaves and enters bending magnets. The
Gaussian factor describes the longitudinal bunch pro-
file. It oscillates as stt oscillates. This oscillation is ac-
companied by an oscillation (in quadrature) of the
particle's deviation in momentum from a central
value.

There are "chromatic" effects accompanying such
changes. A particle temporarily shifted up in momen-
tum by b,p will be stiffer and hence more weakly
focused. If we eall the resultant shift in radial frequen-
cy cuohQ, the ratio AQ, /hp is called the chromaticity.
At the same time such a momentum shift will cause
the particle to move to larger radius, i.e., the outside
of the bunch. Here the space-charge force provides a
focusing effect which also shifts the frequency. A
measure of the importance of this previously neglected
force is that these two shifts are roughly equal for the
parameters of Table I.

Since the force per unit charge F is small it can have
an important effect only if, as a result of resonance, its
effect is reinforced turn after turn. To analyze this
one must make a Fourier decomposition of the right-
hand side of (11) into terms of the form

C
2

R(n„n„n„n)cos[(n, Q,+n, Q, + n, Q, + n)coot],
pc e

where the frequencies are greater than the revolution
frequency duo by the "tune" factors Q„Q„and Q, .
With inclusion of damping cz and the new force the ra-
dial equation of motion is

dr df
, + 2sz - + Q, ~or

dt

where n„n„n„and n are integers of either sign con-
nected respectively with r„z, stt, and s. All possible
sum and difference frequencies enter unless excluded
by symmetry. There is driven response at each such
frequency and the actual variation of r [over and above
that given by (10)] is the linear superposition of all

these responses. Normally at most one of these terms
is important since its frequency is close to Q„oso, the
natural frequency of the unperturbed oscillator.

Exactly on resonance the maximum response, ob-
tained by solving (11), is given by

Q2 1
rmax (nr nz ns n)

pc/ e 2~0vro.

If this is too large the particle will be lost.
By varying Q„Q„and Q, we have, at the Cornell

Electron Storage Ring (CESR), detected various reso-
nances of this sort with order of magnitude consistent
with (13). The centrifugal space-charge force is not
the only force conceivably causing this behavior, 6 7 but
one whole class of competitors was ruled out experi-
mentally by showing that these resonances disappeared
for low beam currents. That is expected from the pro-
portionality to charge density in (8).

More detailed and quantitative data will be present-
ed for one particular resonance. After reduction of the
beam current sufficiently nondestructive observation
of the bunch "dynamics" was possible. It consisted of
administering a small horizontal deflection and
measuring the rate I/r at which the subsequent oscilla-
tion damped. That rate is plotted in Fig. 2(a) as a
function of the radial tune Q, . The narrow resonance
occurs for tune values which satisfy

Q, = Q, + Q, . (14)

By making small variations in any one of these tunes
and compensating with the others it was unambiguous-
ly confirmed that (14) truly characterized the reso-
nance.

To check this picture a computer simulation was
written in which 500 particles were subjected to these
forces for 400 turns. The result is plotted in Fig. 2(b).
A similar resonance is observed. For various reasons a
more quantitative comparison than is suggested by the
two figures is impractical. For example, the resonance
in Fig. 2(b) is as narrow as could be obtained by track-
ing only 500 particles, a limit dictated by computer
time.

One more feature had to be incorporated into the
simulation to account for this particular resonance.
That feature is "coupling" between horizontal and
vertical oscillations caused by skew quadrupoles in the
accelerator. Analytically such coupling is described by
addition of another term kez to Eq. (11). This neces-
sarily entails also addition of a term kcr to the corre-
sponding equation of vertical motion. Both in the
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CESR and in the simulation the coupling coefficient
kc is under the control of the operator and similar
behavior was observed. When kc is set equal to zero
this resonance disappears. When it is turned up the
data of Fig. 2 result. The coupling parameter and all
other parameters in the simulation were fixed con-
sistent with our best understanding of the accelerator
operation.

It is the strong collimation of the field pattern which
makes it a potent driver of such a complicated reso-
nance as Q, = Q, + 0, in which all the tunes and ampli-
tudes enter. The force varies appreciably both hor-
izontally and vertically for distances comparable to the
transverse dimensions of the beam. The fields of a
cavity, having much larger transverse dimensions,
tend to vary appreciably only on a larger distance scale.
For this reason there are good prospects that the reso-
nance exhibited in Fig. 2 should be completely
describable by this previously neglected force and not

Radial tune, 0,
FIG. 2. (a) Damping rate I/r measured in CESR and ex-

hibiting a synchrobetatron resonance. (b) The same reso-
nance investigated by a multiparticle computer simulation.
Existence of the resonance depends on both the centrifugal
space-charge force and coupling of vertical and horizontal
motion.

be polluted by other beam-wall interactions. That is

why it has been emphasized in this paper.
This previously neglected force is essentially dif-

ferent from the well-known (but hard to calculate reli-
ably) self-forces due to transverse coupling "im-
pedances. "s An impedance, usually employed in the
frequency domain, is a ratio of voltage (or force) to
current. As such, the term is only applicable to situa-
tions in which there is only one important independent
variable (in this case longitudinal position or equiv-
alently time). Since the centrifugal space-charge force
described here has essential dependence also on both
transverse coordinates it cannot be encompassed in the
impedance formalism.

The force discussed in this paper has been neglected
in all previous accelerator calculations. This has been
shown to be a mistake, as its effects are large. It is not
ruled out that this force is even dominant in some cir-
cumstances in the sense that beam-wall forces can be
neglected without qualitative change in the phenome-
na. Such a claim could only be supported by further
work, both theoretical and experimental.

I wish to acknowledge the contributions made by the
CESR Operations Group. The data of Fig. 2 were tak-
en with Lloyd Sakazaki using methods pioneered by
Raphael Littauer and him. Some of the results have
been checked by Glenn Decker. I have also profited
from numerous conversations with Don Yennie and
Andrew Sessler.
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