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Heat-transport measurements in a bulk normal-fluid *He-*He mixture heated from below and
over the range —0.02 < < 0.02 of the separation ratio ¢ reveal a forward bifurcation with an ini-
tial slope S =0 of the Nusselt number for large ¢, and a backward bifurcation for ¢ < ¢, =0.006.
At,, S=1. The critical line AT,(¢) has two branches which meet at ¢ = —0.003, and which we
attribute to the expected stationary and Hopf bifurcation lines. However, stable oscillations bifur-
cating from the conduction state exist only for ¢y < —0.015.

PACS numbers: 47.20.—k, 47.25.—c

In a horizontal layer of fluid heated from below, a
transition, or bifurcation, occurs from conduction to
convection when the temperature difference AT
reaches AT,.. Depending on the values of relevant
externally controlled parameters, the fluid velocity
may grow continuously as A7 increases beyond AT,,
or it may jump precipitously to a finite value. We refer
to the former case as a forward, and to the latter as a
backward bifurcation. In analogy to equilibrium phase
transitions, we shall call the marginal case between
them a tricritical bifurcation. After a backward bifur-
cation, fluid flow will persist even when A T is reduced
below AT, until a so-called saddle node is reached
where convection ceases abruptly. We call a transition
a Hopf bifurcation or a stationary bifurcation, depend-
ing on whether the velocity of the convecting state is
time-periodic or constant. It may occur that a line of
Hopf bifurcations in parameter space meets a line of
stationary bifurcations. Such a point is a codimen-
sion-two bifurcation. Convection in liquid mixtures
has provoked considerable attention recently because
it reveals a number of these interesting nonlinear
phenomena. They are associated with the interaction
between heat diffusion and mass diffusion.!”’
Theoretical investigations have been limited largely to
the physically unrealistic case of permeable and slip
top and bottom boundaries and thus are not expected
to be quantitatively reliable. We present in this paper
the results of an experimental investigation which re-
veal that even the qualitative features predicted by the
theory are not all shared by the physical system with
rigid, impermeable boundaries.

In the case of binary mixtures there are rwo parame-
ters which can be controlled externally. One of them,
the Rayleigh number R, is proportional to the imposed
temperature difference AT. The other, the separation
ratio ¢, is proportional to the thermodiffusion ratio ky
and can in our case be varied by changing the mean
operating temperature. Thus, a wide range of the R-ys
plane can be explored experimentally. For ¢ >0
(¢ < 0) concentration gradients will tend to enhance
(suppress) convection. The theoretical prediction for
the phase diagram is illustrated in Fig. 1(a). Albeit in
part from calculations with unphysical boundary condi-
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tions, one expects the following. The convecting state
for values of R slightly greater than the critical value
R, will be time-periodic or stationary, depending on
the value of ¢.""? For sufficiently negative ¢, there is
a Hopf bifurcation at R.o(¢) (dashed line). For larger
¥, the bifurcation at R, () leads to steady convection
(solid line). The two bifurcation lines meet in the R-y
plane at the codimension-two (CT) point when
Y=, <0.I* At that point, the stationary bifurca-
tion is backwards.!"? It is predicted to become forward
via a tricritical bifurcation when ¢ is increased to ¥,.>
For positive §, R, is reduced and the initial slope of
the heat-transport (Nusselt number) curve is predicted
to be dramatically depressed.

The experimental results are summarized in part in
Fig. 1(b). Over the range —0.02 <y < 0.02 we find
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FIG. 1. (a) Theoretical and (b) experimental phase dia-
gram in the R-¢ plane. The vertical scale is schematic ex-
cept for the point R/R.(y=0)=1. Solid lines, stationary
bifurcation at R.(y); dash-dotted lines, saddle-node bifur-
cation; long dashed lines, bifurcation from pure conduction
to oscillations at R.o(¢); short dashed lines, bifurcation
from oscillations to a convecting state (heteroclinic orbit in
the theory).
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the following features. (1) For sufficiently large posi-
tive ¢, there is a forward bifurcation to steady convec-
tion at a small value of R, and the initial slope S of
the Nusselt number is very small or zero. These ob-
servations are consistent with the theory. (2) When ¢
is reduced below ¥, =0.006, the stationary bifurcation
becomes hysteretic. The theory predicts a change
from a forward to a backward bifurcation via a tricriti-
cal bifurcation at ¢ =, < 0,% whereas we find ¥, > 0.
The saddle node which results from the backward bi-
furcation is shown as dash-dotted lines in Fig. 1. (3)
For ¢y <, there exist two convecting states, one at
relatively small and the other at larger R [this is not
shown in Fig. 1(b)]. The corresponding heat-transport
curves are qualitatively similar to those encountered in
non-Boussinesq systems® where there are separate
ranges of stability for three-dimensional (hexagonal)
and two-dimensional (roll) flow. The existence of two
states has not yet been predicted. (4) For —0.015
< ¢ <, we found no Hopf bifurcation to a time-
periodic state from the conduction state. The theory
predicts a forward Hopf bifurcation at R_, for this
range of Y. Stable oscillations about the conduction
state were found only for ¢ < —0.015. (5) The curve
R.(y) for the backward bifurcation has two branches
which meet at a value of ¢ rather close to that expect-
ed for ¥,.. We conjecture that there exists a Hopf bi-
furcation for —0.015 <y <y, which immediately
triggers a transition to the convecting branch associat-
ed with the backward stationary bifurcation. (6) The
convecting state which exists at small R and for
Y < ¢, is always a stationary flow. The branch exist-
ing at larger R has a very slow periodic time depen-
dence (periods up to 400 vertical thermal diffusion
times) for some of the parameter values used in our
work. There are no predictions for the time depen-
dence of the convecting state.

The convection cell was installed in an apparatus
used previously.® It was rectangular, had a height d of
0.110 cm, and aspect ratios L,=/,/d=26.0 and
L,=1/d=6.50 (I, and I, are the length and width of
the cell). The fluid was the same *He-*He mixture
that had been used for the study of the codimension-
two bifurcation in a porous medium.®® We are there-
fore able to use the relationship ¢ (7T) established
from that work.!® With increasing 7, ¢ increases from
negative values and passes through zero at 7'=2.223
K.® The Lewis number is close to 0.03. The Prandtl
number o is 0.6.

Since we cannot observe the pattern in the liquid-
helium experiment, we made shadowgraph flow visu-
alizations and Nusselt-number measurements at room
temperature using water (o =6) and a cell with
d=0.279 cm and the same L,=26.0 and L,=6.50.
From the Nusselt-number measurements as a function
of e=R/R.—1 we found S=(dN/de) —q=0.90.
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The pattern consisted of thirteen pairs of straight rolls
parallel to the short side. It was stable until a transi-
tion to twelve pairs occurred with increasing €, near
€=3.5, which we presume to be due to the skewed-
varicose instability.!! In the helium experiments,
N (e) evolved smoothly with increasing € for the mix-
ture at all values of ¢ (except for the hysteresis near
R.) as well as for pure “He. A transition occurred
near € =0.7, roughly where we expect the skewed-
varicose instability to occur for o =0.6. Thus the
thermal behavior of the low-temperature system is also
consistent with a parallel-roll pattern.

In Fig. 2(b) we show as solid circles the convective
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FIG. 2. Convective contribution N—1 to the Nusselt
number N as a function of the temperature difference across
the cell. Open circles are for 10(N —1). The indicated tem-
peratures are for the cold end of the cell. Approximate
values of the separation ratio ¢ are (a) 0.02, (b) 0.006, and
(c) —0.004. In (c), the plusses correspond to unstable pure
conduction states which decayed to the convecting branch.



VOLUME 56, NUMBER 13

PHYSICAL REVIEW LETTERS

31 MARCH 1986

contribution N — 1 to the Nusselt number N as a func-
tion of the temperature difference across the cell at a
cold-end temperature of 2.2409 K (¢ ==0.006). There
is a sharp nonhysteretic (forward) bifurcation near
AT,=297 mK. The sharpness of the bifurcation is il-
lustrated more dramatically by the open circles, which
correspond to 10(N —1). The initial slope S of N is
1.01, very close to that measured with pure *He and
with water.

In Fig. 2(a), data similar to those in Fig. 2(b) are
shown for T=2.3074 K (¢ =0.02). The nature of
the heat-transport curve has been altered greatly. The
bifurcation occurs at a significantly smaller value of AT
(AT, =23 mK or less), corresponding to a smaller
R.. Near the bifurcation the slope of N is dramatically
reduced, by a factor of 20 or more compared to Fig.
2(b). The data are also consistent for instance with
(N —1) ~ €2 near =0, corresponding to S=0. The
behavior illustrated here for positive ¥ is consistent
with the theory.!:2

In Fig. 2(c), N—1 is shown as a function of AT for
2.2142 K (¢ == —0.004). The bifurcation is clearly
hysteretic, with AT, =3.67 mK and a saddle-node bi-
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FIG. 3. Expanded view of the Nusselt number as a func-
tion of AT for two top temperatures, corresponding to (a)
¢ =0.006 and (b) ¢ = —0.004. Open circles, increasing
heat current; solid circles, decreasing heat current. The
plusses are unstable pure conduction states which decayed to
the convecting branch as indicated by the arrows.

furcation point at A7;=3.36 mK. The convecting
state has two branches, labeled I and II, one extending
from AT; to AT=3.50 mK and the other existing
from AT ==3.48 mK up to the skewed-varicose insta-
bility near AT =5 mK.

Details of the heat-transport curves near the bifurca-
tions for 7=2.2409 and 2.2142 K are shown in Figs.
3(a) and 3(b). Here the open (solid) circles corre-
spond to stable states reached by increasing (decreas-
ing) the heat current, and plusses correspond to un-
stable pure conduction states. The arrows indicate
transitions which, at constant heat current, will involve
a decrease (increase) in AT when N increases (de-
creases). As can be seen from Fig. 3(a), there is no
hysteresis for 7=2.2409 K (y =0.006). Figure 3(b)
illustrates in detail the hysteretic transition (backward
bifurcation) which occurs for ¢ < 0.006. The ex-
istence of the two convecting states I and II is also
clearly demonstrated by these data.

In Fig. 4 we show A T, (open circles) and A T, (solid
circles) as a function of 7. Along the upper edge we
give our estimate of ¢ (7). We find that AT, varies
smoothly with T (or ¥). On the other hand, the ex-
perimental values of AT, clearly fall on two branches,
labeled 1 and 2, which meet at 7=2.216 K or

0%y

[9)
40 T T I T

10 AT(K)

1 1 1 1
2.21 2.22 2.23 2.24

T (K)

FIG. 4. Open circles, the temperature difference A7 of
the saddle-node point [see Fig. 3(b)]; solid circles, the criti-
cal temperature difference A7, at the onset of convection
with increasing heat current [see Fig. 3(b)]. The values of
the separation ratio ¢ are given along the top border of the
figure. The vertical arrow near the top border corresponds
to the codimension-two point ¢, for the porous medium
case. The horizontal double-ended arrow gives the expected
location of ¢, for the bulk mixture.
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¢ = —0.003. The high-temperature branch (2) meets
the saddle-node line at T,=2.240 K, corresponding to
¥, =0.006. The theory’ predicts a negative y, at a tri-
critical point with (N —1) ~ €"/2 for the change from a
forward to a backward bifurcation. However, for our
Lewis number the departure of N(e) from nearly
linear behavior is expected to be confined essentially
to € < 10~3 and thus would be difficult to observe.'?
The Nusselt number data shown in Figs. 2(b) and 3(a)
correspond very closely to ¥,. They give an initial
slope S of N essentially equal to that obtained with
pure *He and thus, as expected, do not reveal tricritical
behavior. However, the positive ¢, differs from the
predicted negative ¢,. Our data differ from an experi-
mental result obtained with *He-*He mixtures by Gao
and Behringer,!® who report tricritical behavior with a
divergent initial slope S of N. Since their Lewis
number is similar to ours, we are unable to explain
their data.

In Fig. 4, the downward-pointing arrow near
¢ = —0.001 indicates the experimentally observed CT
bifurcation in the porous medium.®*® In the bulk
fluid, one expects this bifurcation at a somewhat more
negative value of ¢.!'3 The expected location is
dependent upon the value of the Lewis number
(which is not known very well) and of o. It falls
somewhere within the range indicated by the double-
ended horizontal arrow in Fig. 4, and is thus consistent
with the experimentally observed meeting point of the
two branches of AT,(y). We believe that the high-
temperature branch (2) of AT,(y) is the stationary bi-
furcation at AT, We conjecture that the low-
temperature branch (1) corresponds to the Hopf bifur-
cation at AT, In that case the meeting point at
¢ = —0.003 corresponds to the CT point at §,.. How-
ever, we have observed no oscillations in its vicinity.'*
Thus, many of the interesting phenomena expected to
occur there® ¢ cannot be studied in this system.

We did observe stable oscillations bifurcating from
the conduction state for ¢ < —0.015 [see Fig. 1(b)].
Within our resolution this bifurcation was nonhys-
teretic. However, at the bifurcation point, the fre-
quency was small and the oscillation amplitude finite.!®
The amplitude at AT,y apparently grew to sufficient
size to reach the attractor basin of the stationary con-
vecting state when —0.015 < ¢ < ¢, thus preventing
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the observation of stable oscillations over that range.
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