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Invariance of the Spectrum of Light on Propagation
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The question is raised as to whether the normalized spectrum of light remains unchanged on
propagation through free space. It is sho~n that for sources of a certain class that includes the usu-
al thermal sources, the normalized spectrum will, in general, depend on the location of the observa-
tion point unless the degree of spectral coherence of the light across the source obeys a certain scal-
ing law. Possible implications of the analysis for astrophysics are mentioned.

PACS numbers: 42. 10.Mg, 07.65.—b, 42.68.Hf

I (r, ~) = (E"(r, t)E(r, t+~)), (2)

Measurements of the spectrum of light are generally
made some distance away from its sources and in

many cases, as for example in astronomy, they are
made exceedingly far away. It is taken for granted that
the normalized spectral distribution of the light in-

cident on a detector after propagation from the source
through free space is the same as that of the light in
the source region. I will refer to this assumption as
the assumption of invariance of the spectrum on prop-
agation. This assumption, which is implicit in all of
spectroscopy, does not appear to have been previously
questioned, probably because with light from tradition-
al sources one has never encountered any problems
with it. However, with the gradual development of
rather unconventional light sources and with the rela-
tively frequent discoveries of stellar objects of an un-
familiar kind, it is obviously desirable to understand
whether all such sources generate light whose spec-
trum is invariant on propagation, and if so, what the
reasons for it are. Actually it is not difficult to con-
ceive of sources that generate light whose spectrum is
not invariant on propagation. In this note I will show
what are the characteristics of a certain class of sources
that generate light whose spectrum is invariant, at least
in the far zone.

From the standpoint of optical coherence theory, in-
variance of the spectrum of light on propagation from
conventional sources is a rather remarkable fact, as can
be seen from the following simple argument. Consid-
er an optical field generated by a stationary source in

free space. The basic field variable, say the electric
field strength at the space-time point (r, t), may be
represented by its complex analytic signal' E (r, t ) .
According to the %iener-Khintchine theorem3 the
spectral density of the light at the point r is then
represented by the Fourier transform,

pOO

S(r, co) =
J I (r„7.)e' 'dT, (1)

of the autocorrelation function (known in the optical
context as the self-coherence function) of the field
variable. It is defined as

where the angular brackets denote the ensemble aver-
age. Now the spectral density and the self-coherence
function are the "diagonal elements" (r2 = ri = r) of
two basic optical correlation functions, viz. , the cross-
spectral density

W(ri, r2, to) =
J I (ri, r2, T)e'"'dv,

and the mutual coherence function

It is well known that both the mutual coherence func-
tion and the cross-spectral density obey precise prop-
agation laws. For example, in free space4

('7j+k2) 8'(ri, r2, to) =0 (j =1, 2),

where

k = co/c,

with c being the speed of light in vacuo and V&~ being
the Laplacian operator acting with respect to the vari-
able r, . Consequently, both the mutual coherence
function and the cross-spectral density and, in fact,
also their normalized values change appreciably on
propagation. For example, for a spatially incoherent
planar source W(ri, r2, co) and I'(ri, r2, v) will be
essentially 5 correlated with respect to r& and r2 at the
source plane but will have nonzero values for widely
separated pairs of points which are sufficiently far away
from the source. This is the essence of the well
known van Cittert-Zernike theorem (Ref. 1, Sect.
10.4.2). In physical terms, the correlation in the field
generated by a spatially incoherent source may be
shown to have its origin in the process of superposi-
tion. We thus have the following rather strange situa-
tion: The correlations of the light may change drasti-
cally on propagation; yet, under commonly occurring
circumstances, their (suitably normalized) diagonal
elements, which represent the spectrum of the light or
its Fourier transform, remain unchanged.

To obtain some insight into this problem we con-
sider light generated by a very simple model source;
namely, a planar source occupying a finite domain D of
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J (u) =O'AS'o'((u)p, ' '(ku, , cu)c ose

In this formula, A is the area of the source,

(8)

is the two-dimensional spatial Fourier transform of the
degree of spectral coherence, u, is the transverse part
of the unit vector u, i.e., the component of u (con-
sidered as a two-dimensional vector) perpendicular to
the z axis, and e is the angle between the u and the z
directions (see Fig. 1). Evidently the normalized spec-
tral density S' '(u, o)) at a point in the far zone, in
the direction specified by the unit vector u, is given by

S'"'(u, cu) = J„(u)/ J„(u)des. (10)

a plane z =0 and radiating into the half space z & 0,
which has the same spectral distribution S(0)(co) at
each source point P(p) and whose degree of spectral
coherence p,

( '(p, , p2, co) is statistically homogene-
ous, i.e., has the functional form )M, (pz —

p&, co).
The cross-spectral density of the light across the
source plane is then given by

W'(0) (p), p2, cu)

= e(p) )e(pz)S") (~)p("(pz —p), ~),
where e(p) =1 or 0 according to whether the point
P(p) is located within or outside the source area D in
the plane z =0.

We will also assume that at each effective frequency
co present in the source spectrum, the linear dimen-
sions of the source are much larger than the spectral
correlation length [the effective width 4 of ~p, (0)(p',
cu) ~]. Sources of this kind belong to the class of so-
called quasihomogeneous sources, which have been ex-
tensively studied in coherence theory in recent years.
Most of the usual thermal sources are of this kind.

The radiant intensity J„(u), i.e., the rate at which
energy is radiated at frequency (u per unit solid angle
around a direction specified by a unit vector u, is given
by the expression [cf. Ref. 6, Eq. (4.8)]

On substituting Eq. (8) into Eq. (10) we obtain for the
normalized spectrum in the far zone the expression

O'S(0'((u) p,
' '(ku, , cu)

S (u cu)= (11)Jk'S' '(co) p,
( '(ku, , co)d(u

It is clear from Eq. (11) that the normalized spec-
trum of the light depends on the direction u; i.e., it is
in general not invariant throughout the far zone.
However, it is seen at once from Eq. (11) that it will

be invariant throughout the far zone if the Fourier
transform of the degree of spectral coherence of the
light in the source plane is the product of a function of
frequency and a function of direction, i.e., it is of the
form

jc(0)(ku, , au) =F(c )H(u, ).
In this case Eq. (11) reduces to

(„) O'S(o) (co)F (co)S u, Ql

k S (QJ )F ( QJ )d Gu

1.e.,

=F(r )J H(u, )exp(iku, p') d'(ku, ), (14)

and the expression on the right is independent of the
direction u.

I wiII now show that the condition (12) has some in-
teresting implications, which follow from the fact that
p,

(0) is a correlation coefficient. Before doing this we
note that since u is a unit vector, ~u~ ~ ( 1. However,
we will now assume that the factorization condition
(12) holds for all two-dimensional vectors u, (0
~ (u~ I (~). This assumption will be trivially satis-
fied if the degree of spectral coherence p,

( '(p', (u) is,
at each effective temporal frequency (u, band limited
in the spatial frequency plane to a circle of radius k
about the origin; in more physical terms this condition
means that p(0)(p', (u) does not vary appreciably over
distances of the order of the wavelength )(. =2mc/0).
With this being understood let us take the Fourier
transform of Eq. (12). We then find at once that

p(0)(p', o)) =O' F(cu)H(kp'), (15)

where H is, of course, the two-dimensional Fourier
transform of H. Since p,

( )(p', cu) is a correlation co-
efficient it has the value unity when p =0, i.e. ,

p,
( (0, co) = 1, for all co,

and hence Eq. (15) implies that

k'F (e) ) = [H (0) ]

(16)

FIG. 1. Illustration of the notation.
Since the left-hand side of Eq. (17) depends on the
frequency but the right-hand side is independent of it,
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each side must be a constant (u say) and consequently

F(~) = ~/'k'. (18)

Two important conclusions follow at once from
these results. If we substitute Eq. (18) into Eq. (13)
we obtain the following expression for the normalized
spectrum of light in the far zone:

S'"'«, ~) = S'(")((0) = . . (19)
g(0) (

S ((0 )d(0

This formula sho~s that not only is the normalized
spectrum of the light now the same throughout the far
zone, but it is also equal to the normalized spectrum of
the light at each source point.

Next we substitute Eq. (18) into Eq. (15) and set
o(H = h, p' = p2

—pt. We then obtain for p.
' ' the ex-

pression

p( (P2 P) (0) = h [k(p2 —pt)]
(k = (0/c ); (2())

i.e. , the complex degree of spectral coherence is a
function of the variable ((:=k(p2 —pt) only. We will

refer to Eq. (20) as the scaling la)v. Obviously for a
source that satisfies this law, the knowledge of the de-
gree of spectral coherence of the light in the source
plane at any particular frequency (o specifies it for all

frequencies.
The scaling law (20), which ensures that for sources

of the class that we are considering the normalized
spectrum of the light is the same throughout the far
zone and is equal to the normalized spectrum of the
light at each source point [Eq. (19)], is the main result
of this note.

It is natural to inquire whether sources are known
that obey this sealing law. The answer is affirmative.
Many of the commonly occurring sources, including
blackbody sources, obey Lambert's radiation law [Ref.
1, Sect. 4.8.1]. It is known' that all quasi-homo-
geneous Lambertian sources have the same degree of
spectral coherence, viz.

p, '"(P2 —p), ~) =»n(k IP2
—p) I)/k IP2

—ptl, (21)

which is seen to satisfy the scaling law (20). Accord-
ing to the preceding analysis such sources will generate
light whose normalized spectrum is the same
throughout the far zone and is equal to the normalized
spectrum ai each source point. This fact is undoubted-

ly largely responsible for the commonly held, but
nevertheless incorrect, belief that spectral invariance is
a general property of light.

This Letter has dealt with what is probably the sim-
plest problem regarding spectral invariance on prop-
agation. It should seem that some significant questions
in this area might be profitably studied. Among them
are the elucidation of the physical origin of the scaling
law, spectral properties of light from a broader class of
sources than considered here, the relation between the
scaling law and Mandel's results regarding cross-
speetrally pure light, a 9 and relativistic effects. Appli-
cations of the results to problems of astrophysics
might be of particular interest; at this stage one might
only speculate whether source correlations may
perhaps not give rise to differences between the spec-
trum of the emitted light and the spectrum of the
detected light that originates in some stellar sources.
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