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Resonant Photodetachment of the Positroninm Negative Ion

J. Botero and Chris H. Greene
Department ofPhysics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

(Received 10 January 1986)

An adiabatic treatment in hyperspherical coordinates is used to predict the existence of resonant
structures in Ps (Ps denotes positronium) photodetachment. This highly correlated system
displays a weak series of narrow Feshbach resonances lying just below the Ps(n =2) threshold,
while a single strong shape resonance dominates the photodetachrnent spectrum above this thresh-
old as in H . Use of a "prediagonalized" representation of hyperspherical harmonics dramatically
improves the convergence of the adiabatic calculation.

PACS numbers: 36,10.Dr, 31.20.Tz, 32.80.Dz

Ever since Mills observed' the ground state of the
positronium negative ion (e e e+), there has been
much interest in the theoretical study of its autode-
taching states. 2 5 On the basis of the simple ratio4 of
the binding energies of the ground state and the lowest
'S' doubly excited state of Ps to those of H (ap-
proximately a factor of —,

' ), one might expect a
correspondence between these two systems to hold
throughout the whole spectrum. Intuitively, however,
this is not a foregone conclusion, since Ps consists of
three particles tumbling about their center of mass,
while H consists of two light particles undergoing
correlated motion in the central field of an "infinitely
massive" proton. In fact, this relationship is apparent-

ly not maintained in the case of a 3P' metastable state
below the n = 2 threshold that exists in H but has not
shown up in two previous investigations of Ps . In
this Letter we predict the existence of a series of Fesh-
bach resonances and of a single shape resonance in the
'P' Ps system, closely analogous to those first
predicted by Burke and co-workers and later by Lins
in H . Our conclusions are based on an adiabatic
treatment in hyperspherical coordinates. An essential
element of this treatment is a new method which

selects a small subset of physically relevant hyper-
spherical harmonics that dominate the expansion of
the few-particle adiabatic wave function.

As in our previous study of the Ps ground state, 4

we describe the three-particle configuration space in
terms of symmetric Jacobi coordinates ri (the in-
terelectron separation) and x (the separation of the
positron from the center of mass of the electron pair).
These are in turn used to define hyperspherical coordi-
nates: a hyperradius R =—(ri2+ r22)'/ and a hyperan-
gle a=tan '(r2/ri), where r2=(/t, , +/p, )' x

( & )1/2x 4

The adiabatic treatment in hyperspherical coordi-
nates begins by finding potential energy curves U„(R)
which govern the motion of the system in R. These
are eigenvalues of the fixed-R Hamiltonian,

U —A (0)/R2+ C(A)/R,

in which 0 denotes all five angular coordinates
II = (a, ri, r2), C/R denotes the total potential energy
of the three particles, and A2(O) denotes the angular
contribution to the kinetic energy operator. In this
coordinate system the eigenfunctions of A2(Q) [cor-
responding to eigenvalues (A. +2) ——,

' = (2m + li
+ l2+ 2) 2 ——,] are hyperspherical harmonics, 9

ytnt i (IJ ) = +inl t (cos~) (sin~) ' F( —m, rn+ li+ l2+2;l2+ —', ;sin ~) Yt t L~ (ri, r2)&ster . (2)

Here N t, i, is a normalization constant, F is a hyper-

geometric (Jacobi) polynomial, Y is a standard coupled
spherical harmonic function, and X is a two-elec-
tron spinor. Antisymmetry of the wave function
under electron exchange is enforced by requiring

S+ Ii+ 1
( —1) ' = —1. The eigenvalue of the parity
operator is ir= ( —1) ' '. For 'P' then, Ii+l2 is
li is even, and X = 1,3, 5, 7, . . . since the number of
nodes in a is m=0 1, 2, . . . , etc. Solution of the
eigenvalue equation UQ»(R; 0) = U„(R)@»(R;0)is
the most difficult step in our calculation. Here we ex-
tend an approach introduced by Lin, '0 which diagonal-
izes the matrix U «,t, t calculated in a

mlil2, et Ii l2

hyperspherical-harmonic basis set. This basis set

possesses two advantageous properties: (i) It is ideal
in the limit R 0, where C/R is negligible; and (ii)
the basis functions y t, t, (0) are independent of R
whereby the matrix C can be calculated once and for
all and used to diagonalize U at all R values. A well-
known disadvantage of the hyperspherical-harmonic
expansion of an adiabatic eigenfunction @» is its ex-
tremely slow convergence at R ~. This conver-
gence is slow because the @» becomes confined into a
smaller and smaller portion of the (cr, &i2) plane as R
increases, where it describes a positronium bound-
state wave function. (Reference 4 used an asymptotic
basis set in its study of 'S' symmetry. That is less
practical here because the angular wave functions are
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FIG. 1. Absolute values of the expansion coefficients of
the lowest 'P' adiabatic eigenstate at R = 20 plotted in two
different representations. Below each plot is ~, the grand
angular momentum corresponding to a set of degenerate
hyperspherical harmonics. Each dot is the coefficient of a
single such harmonic. Solid lines interconnect those states
within the same fixed-X manifold, while dashed lines con-
nect adjacent states having different values of X. In (a), the
representation of harmonics used is that of Eq. (2). In (h)
instead, the "prediagonalized" representation is adopted, as
described in the text.

must lie primarily in the attractive portions of the
three-particle potential surface and hence are associat-
ed with configurations such as e - e+ - e . Those
eigenstates associated instead with the higher c„„must
correspond to repulsive„highly unstable configurations
like (e e ) -e+ which cannot represent any quasi-
bound or resonant state.

%e truncate the basis set accordingly, retaining only
the lower eigenstates within each X manifold. This al-

lows the inclusion of very high ( ii i2), but in their
physically relevant linear combinations only. Numeri-
cal tests of this procedure showed that only the lowest
three such states in each )i. manifold contribute appre-
ciably. This enables us to improve convergence by in-

substantially more complicated in the case of 'I and
most other symmetries. ) In order to speed up this
slow convergence at large R, we introduce the follow-
ing method for selecting the most important basis
states.

In general each eigenvalue of A has a large degen-
eracy. For 'P' symmetry each successive eigenvalue
of A contains one additional degenerate state (miil2),
the actual degeneracy being (A. +1)/2. The linear in-
crease of degeneracy with increasing )i. introduces two
questions: What is the significance of this high multi-
plicity of states, and is there a meaningful way to dis-
tinguish among them? In Lin's analysis of H, ii and
i2 are the orbital angular momenta of electrons 1 and 2
about the proton. s A natural truncation of the basis
set could therefore be obtained by restricting the
number of (Iii2) pairs to only one or two (e.g. , sp and

pd for 'P' H states associated with n & 3). The same
truncation would make no sense in our Jacobi coordi-
nate system for Ps, where ii is the orbital angular
momentum of the electrons about each other (i.e.,
conjugate to ri), while i2 is the orbital angular momen-
tum associated with rotation of the positron and the
electron pair about their center of mass (i.e., conjugate
to r2). That is, as R ~ the basis set must include
infinitely high (iii2) (at large radii it '" must increase
in direct proportion to R/n2) in order to represent the
localized Ps(n) wave function, making it far more dif-
ficult to obtain converged potential curves for Ps
than for H

A way to circumvent this difficulty, and in effect to
put Lin's truncation of Hilbert space into a form appli-
cable to any few-particle system, emerges upon con-
sideration of Fig. 1, where we plot the absolute value
of the eigenvector of U corresponding to the lowest
eigenvalue Ui at R =20. Figure 1(a) shows this
eigenvector Ia

&, i, „!in the "primitive" representa-

tion of hyperspherical harmonics y i, i, ( 0 ) given in

Eq. (2). Clearly, the eigenvector components are dis-
tributed comparably among most of the (mlt12) values
without any discernible pattern. Eigenvector com-
ponents !ai„„! of this same adiabatic eigenstate
(p, =1) are shown in Fig. 1(b), but they have been
transformed into an alternative representation in
which each degenerate block of the potential matrix C
corresponding to a given X has been made diagonal. In
this representation the index v = 1, 2, . . . , ( g + I )/2
labels successive eigenvalues c„„ofthe fixed-A. C ma-
trix, in increasing order. Figure 1(b) shows that only
the two or three eigenstates in each fixed-& manifold
corresponding to the most attractive potential eigen-
values ei,„contribute appreciably to the adiabatic wave
function. The reason why this prediagonalization sorts
out the physically relevant hyperspherical harmonics is
clear: The eigenstates associated with the lower eigen-
values c„„of C within each degenerate-X manifold
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eluding far more X values. For example, the final
diagonalization at many R values involved 108 of these
"prediagonalized" basis functions, but incorporated
the effects of 666 "primitive" basis functions
y &, t, (0). This method of identifying quantum

numbers through the condensed-atom limit R —0
should prove to be generally applicable to other few-
particle systems as well (see the work of Clark and
Greene, " for example).

The adiabatic treatment approximates the total wave
function by

@(R;fI) = F„(R)@„(R;0).
When substituted into the Schrodinger equation, this
gives a radial equation for F„(R),

[ —82/tlR2+ W„'„(R)+U„(R) —F]F (R) =0, (4)

where we neglect the coupling between different chan-
nels but retain the diagonal adiabatic correction term
&» (R) .4

The potential curves U„(R)+ 8»(R) are shown
in Fig. 2. (The ground state, a completely repulsive
curve converging to the ground state of Ps, is not
shown. ) For R & 50 a.u. , the diagonalization pro-
cedure described above suffices to generate reasonably
well-converged potential curves. At larger radii this
convergence gets increasingly worse. These three po-
tential curves were accordingly connected smoothly to
their known asymptotic form

U„(R)+ W»(R) —1/4n +D„/R2.

The permanent dipole moments D„ for these three
channels were found to be D = —5.544, D+ =2,
D~=11.544, by use of the standard procedure'2 of
Seaton and of Gailitis and Damburg.

The Ps potential curves of Fig. 2 bear a close quali-
tative resemblance to those calculated by Lins and by

1.6
5500

Klar and Klar'3 for H, and we adopt the same classi-
fication ("+ ","—"', and "pd") introduced by Coop-
er, Fano, and Prats'~ and used in Ref. 8. In both sys-
tems the + curve is the most attractive at small R,
while the —curve is the most attractive at large R.
These adiabatic states do not strictly have different
symmetry, and consequently cannot cross as shown in
the figure. In fact they show an avoided crossing for
Ps whose minimum separation is 5 U = 0.0012 a.u. at
R =35.5, compared with Klar and Klar's' minimum
separation of AU=0. 002 at R =12.5 for H . A
Landau-Zener-type estimation's gives an 80% proba-
bility for a nonadiabatic transition between the adiabat-
ic channels, for an energy which coincides with the top
of the barrier of the + potential 8.3 X 10 4 a.u. above
threshold. This justifies our diabatic interpolation of
the + and — potentials in the range 28 ( R ( 42,
where we have allowed them to simply cross in Fig. 2
just as Lin8 concluded was correct for H

Despite the strong attraction at small distances, the
+ potential curve is not sufficiently deep to support a
quasibound state below Ps(n = 2), but it does support
a shape resonance at an energy that we estimate to be
4X10 4 a.u. above threshold. Figure 3 shows the
elastic scattering phase shift for this + channel and its
derivative with respect to energy, the time delay. The
width of the shape resonance originates from tunnel-
ing through the barrier, and is thus estimated to be
I =4&&10 4 a.u. The "accepted" position and width
of this resonance in H appear to be 6x 10 4 a.u. and
7X10 4 a.u. , respectively. '6 The —channel also has
resonances, but they are qualitatively different. Even
though the —potential curve is far less attractive than
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FIG. 2. Hyperspherical potential curves converging to the

Ps(n = 2) threshold, including the diagonal adiabatic correc-
tion term 8'»(R). These have been interpolated smoothly
and diabatically through the avoided crossing at R = 35.5
a.u.
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FIG. 3. The elastic scattering phase shift and its energy
derivative as functions of energy just above the Ps(n = 2)
threshold for the + channel. These indicate a shape reso-
nance in this channel at an energy of 4X10 a.u. above
threshold. (All coupling between different diabatic channels
has been neglected. )
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+ at small R, the long-range dipole attraction guaran-
tees that an infinity of Feshbach resonances must lie
just below the Ps(n = 2) threshold (ignoring relativis-
tic effects and the Lamb shift). The lowest such reso-
nance is obtained by solving Eq. (4) with the —poten-
tial, giving E=8.7X 10 5 a.u. below the n = 2 thresh-
old. The next lies at 6X 10 6 a.u. , and the binding en-
ergy of successive levels converges exponentially to
zero. They should be narrow and weak, as in H, as a
result of the mock centrifugal barrier which keeps the
particles much farther away from each other (R & 30
a.u. ) than in the + configuration. Since we have not
accounted for interchannel coupling, we cannot calcu-
late the width of the —resonance. A crude estimate
can be derived by comparison with H, nevertheless,
if we make use of the fact that resonance widths and
binding energies scale proportionately in a long-range
dipole field. Since the predicted binding energy of the
first Ps —resonance is roughly an order of magni-
tude smaller than the corresponding value for H
(E=0.001 a.u.),'6 this suggests that the width in Ps
should be around 10 7 a.u.

Previous studies9 of few-electron systems using
hyperspherical coordinates have been primarily quali-
tative, attempting to provide an interpretation of atomic
properties which had been obtained previously from
more sophisticated calculations or from experiment.
In this study, however, we predict the main resonance
features which should be seen in Ps photodetach-
ment, relying only on the hyperspherical potential
curves. They provide an immediate visual interpreta-
tion of the doubly-excited-state properties, showing in
particular how the shape-resonance decay width comes
primarily from tunneling whereas the Feshbach-
resonance decay widths originate entirely in interchan-
nel coupling, an entirely separate physical mechanism.
There remains unsolved the mystery of why some
symmetries of Ps, namely '5' and 'P', parallel H
so closely, while the 3P' metastable state of H did
not show up in previous studies of Ps . A hyper-
spherical calculation" similar to the present one has
confirmed these studies in failing to find any 3P' meta-
stable level below Ps(n =2), but a shape resonance
just above threshold analogous to the tP' shape reso-
nance did emerge and will be discussed elsewhere.

Clearly the e-Ps interaction is less attractive than the
e-H interaction, but the implications of this lessened
attraction must still be investigated on a case-by-case
basis.
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