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Twentieth-Order Perturbation Study of the Nonadiabatic Electric Polarizabilities
for Hz+ via the Perturbational-Variational Rayleigh-Ritz Formalism
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Large-order perturbation theory has been applied, for the first, time, to the Stark effect for H2+,
yielding the Rayleigh-Schrodinger ground-state eigenvalue (polarizability) series through twentieth
order; previous expansions ~ere limited to fourth order. The calculations were performed nonadia-
batically (i.e., without invoking the Born-Oppenheimer approximation) by means of the
perturbational-variational Rayleigh-Ritz formalism. The leading terms of the Rayleigh-Schrodinger
polarizability series so obtained provide the most accurate values thus far determined for n„and
'y 2222
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Significant progress has been made during the last
few years in the study of hydrogenic ions in external
fields via the application of large-order perturbation
theory' (LOPT); exact or highly accurate solutions of
this simpler problem are a prerequisite to a satisfactory
treatment of more complex systems. In this context„
high-order Stark-effect Rayleigh-Schrbdinger (RS)
perturbation series have now been obtained for the
hydrogenic ions; these series are strongly divergent
but asymptotic (e.g. , see Ref. 1) and, indeed, summ-
able by a variety of techniques. ' Such high-order
RS eigenvalue series are of considerable theoretical in-

terest per se because of the Bender-Wu'o-type asymp-
totic formulas which can be deduced' " for the
large-order coefficients; further, the series themselves
often offer the most convenient practical method of
computing physically relevant resultsz s because they
explicitly contain the field strength as a parameter.

In the present work, we initiate the next logical step
in these developments by applying LOPT, for the first
time, to the Stark effect for the hydrogen molecular
ion, H&, obtaining the RS eigenvalue (polarizability)
series for the ground state through twentieth order;
previous calculations' have been limited to fourth-
order expansions. To obtain results of high accuracy
directly, without the necessity of making vibrational
corrections, we do not invoke the customary Born-
Oppenheimer (adiabatic) approximation, but, rather,
treat the problem nonadiabatically, viewing H2+ as a
three-particle system with all particles on an equal
footing. Our calculations are made within the frame-
work of the perturbational-variational Rayleigh-Ritz
(PV-RR) matrix formalism. ' ' Unlike other LOPT
methods, ' which are restricted to hydrogenic sys-
tems, the PV-RR formalism can be extended to more
complex problems, as in the present case, because it is

I

4 (=zf,

f= 1 + m, /M = 1.000 272 234,

(2a)

(2b)

~here z is the electronic coordinate relative to the
geometric center of the nuclei, m, and M are respec-
tively the mass of the electron and the total molecular
mass, and the numerical factor ' f, of the order of uni-
ty, arises from the nonadiabatic treatment of the per-
turbation. Our goal is to determine the RS series for
the perturbed eigenfunctions ~pz(F, )) and eigen-
values E'(F, ), where the superscript s labels the state.
To this end, we introduce a Rayleigh-Ritz 3nsatz for
the

~
gz) where the basis functions are select-

ed12, 19, 20, 22 as

based upon the variational principle as well as upon
perturbation theory. Although originally developed'5
for the LOPT study of discrete stationary states, 's ' it
has been shown in a recent studys of the hydrogenic
Stark effect that the PV-RR formalism requires no
modification when applied to metastable states. ' Our
present results were obtained with a flexible computer
program for implementing the PV-RR formalism,
which fully exploits the extension to large order via
the generalized PV-RR remainder theorem's; all calcu-
lations were performed in ordinary double-precision
arithmetic (about sixteen significant digits).

Consider the perturbed nonadiabatic Hamiltonian
operator ~ for H2+ in a uniform electric field F,
parallel to the nuclear (z) axis. In the center-of-mass
system, gi can be written as

~=W(F, ) =~ +~,F„
where the unperturbed (field free) g 0 has been fully
described in previous nonadiabatic variational calcula-
tions. '9 zo The perturbing (field induced) 4 ~ has the
form

~y"" (g, z,g )) = exp( —ug)cosh(P~)&"q"& 'i'exp( —xz/2)H (x);

here, g and q are the usual elliptical coordinates of the electron, R is the internuclear distance, x = y(R —5), 0„
are the Hermite polynomials, n, p, y, and 5 are adjustable state-dependent nonlinear parameters, and u, u, and w

1986 The American Physical Society



VOLUME 56, NUMBER 13 PHYSICAL REVIEW LETTERS 31 MARCH 1986

are integers. The Ansatz then has the form

~e)= R 2 Ri~--&c'-. (4)

where the linear variational coefficients C'"" form a
column vector C'. In the conventional Rayleigh-Ritz
approach, one obtains as usual from (4) the matrix
eigenvalue equation

HC'= E'SC', (5)

where H and S are respectively the total perturbed
Hamiltonian and overlap matrices, and E' and C' are
obtained by numerical diagonalization of (5) for vari-

ous fixed values of F, . In the PV-RR procedure, how-

ever, H is partitioned according to (1) as

H = H (Fg ) = Ho+ H, F„ (6)

E'=E'(F, ) = QEJ'FJ,
j=0

to high order for the states of interest in a single com-
puter run. The extent to which the series (7) agree
with the corresponding exact RS series depends upon
the effective choice6 of the basis set, and can be deter-
mined, as we shall shortly demonstrate, by an exam-
ination of the variational convergence of the individual
Ef's In what . follows, we consider only the ground
state and suppress the state superscript. Further, to
make closer connection to the widely used notation of
Buckinghamz3 for the lower-order RS static electric po-
larizabilities, we write the E, as

E&= —aj/j!, j=1,2, . . . ,

TABLE I. Variational convergence of PV-RR nonadiabat-
ic u2, n4, and a6 (in atomic units) as functions of N.

10 'n6

where F, is treated as a variable perturbing parameter.
The application of the PV-RR formalism to (5) and
(6) then yields the series

C'= C (F ) = $ C'F~

and refer to the nJ collectively as polarizabilities. For
the ground state of a homonuclear diatomic molecule
with the electric field parallel to the nuclear axis, the
odd-order o.j vanish identically; as a test of our formal-
ism, however, we do not impose this constraint expli-
citly but numerically compute aif oj.

The nonlinear parameters in (3) are fixed at their
optimum field-free values2o of u = 1.6, p = 0.75,
y = 3.0, and 5= 2.1. For various choices of the upper
limits U, V, W and suitable constraints on the sum of
the indices u + v+ w, one can systematically construct
a sequence of variational eigenfunctions (4) with an
increasing number N of basis functions; this is essen-
tial in order to test for variational convergence of the
n, (or E, ). Thus, our PV-RR calculations were
performed over a wide range of N values, N
= 2, 6, 14, . . . , 400, 490, 540, where in each case but
the last the Ansatz contained an equal number of
even (u restricted to even values) and odd basis func-
tions (v restricted to odd values); for N =540, the
constraints are U=9, V=13, W'= l3, and u+v+ w
~ 13, which leads to 295 even and 245 odd basis func-
tions. In all calculations, the odd-order u, were found
to vanish identically as required. In Table I are
displayed our computed values for a2, n4, and ns as
functions of N; it is seen that for N = 540, these quan-
tities have converged to what appear to be the exact
RS values within one unit in the last digit reported.
Table II collects the n, through twentieth order ob-
tained for N = 540, where the variational convergence,
determined as illustrated in Table I, is again judged to
be within one unit in the last digit. Although their ac-
curacy does not warrant inclusion in Table II, order-
of-magnitude estimates obtained in this manner for
n2z and a24 are respectively 0.2X 10 and 0.3 &&10

Finally, in Table III, our PV-RR nonadiabatic a2 and
o.4 are comparedz3 with polarizabilities (a ) and hy-
perpolarizabilities (y ) computed with more conven-
tional adiabatic (vibrationally corrected) and nonadia-
batic methods'2; these previous results can be further
subdivided into variational finite-field'2 2' (VFF),
variational-perturbational 5 (VP), and numerical
Hartree-Fock (NHF) calculations. In all cases, these

26

68
100
140
190
250
320
400
490
540

5.96
5.854
5.837
5.8329
5.8311
S.83057
5.83043
S.&3038
5.83036
5.830 357
5.830356

1750
2081
2149
2184
21 &9.7
2191.8
2192.84
2192.99
2193.05
2193.09
2193.09

1.6
5.1

5.57
5.86
5.936
5.960
5.9712
5.9738
S.9747
5.9752
5.9753

2
4
6
8

10

0.583 0356 x 10
0.219 309 x 10
0.597 53 x 10

0.4503 x 10"
0.673 x 10'~

12
14
16
18
20

0.169x 10"
0.64 x 10'4

0,34x 10
0.24 x 10
0.22x 10 9

'Field-free energy Fo = —0.597 139057 a.u.

TABLE II. High-order RS nonadiabatic polarizabilities n,
(in atomic units) for the ground state of H2+ computed via
the PV-RR formalism with N = 540.'
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TABLE 111. Comparison of nonadiabatic u and 7„„(in
atomic units) for H2' computed by different methods.

Method' ~zz 10—3Type

vFF'
vp c

vFF'
NHF
vFF'
vFF
Pv-RR"

5.8386
5.8386
5.8386
5.84
5,8306'
5.8304'
5.830 356

1.502
1.502
2.205
2.3
2.27
2.19
2.19309

'"See Ref. 12: Methods A and B are within the Born-Oppenheimer
(adiabatic) approximation with corrections for molecular vibration;
method C is non-Born-Oppenheimer (nonadiabatic).

b Reference 12.
'References 12 and 25.
dReference 26.
'Reference 22; variational E(F2) fitted with fourth-degree poly-

nomiall.

~Corrected with nonadiabatic f', Eqs. (2).
~Reference 22; variational E (F, ) fitted with even powers of

sixth-degree polynomial.
"This work.

o.„are in good to excellent agreement with our highly
accurate value, the best previous results being ob-
tained' via nonadiabatic VFF calculations. The
spread among the computed y„„ is considerably
greater where, again, the nonadiabatic VFF result
(computed with the sixth-degree polynomial) is in
close agreement with our more accurate value. In the
context of methodology, it should be noted that VFF
and PV-RR formalisms require essentially the same in-
put matrices, but the former is necessarily limited to
lower-order polarizabilities while the latter, with but
modest computational effort, is capable of computing
with high accuracy the lower-order terms of interest to
the experimentalist, as well as higher-order terms re-
quired for series summation and theoretical analysis.
Further, the prospects of extending the PV-RR for-
malism to more complex systems, where larger ma-
trices will be required, are distinctly promising since,
in the present case, quite good values for o.2, o.4, and
u6 were obtained already for N = 100 (cf. Table I).

It is of interest to compare the high-order polariza-
bilities of H2+ with those of hydrogenic ions. ' As
might be anticipated, both sets are qualitatively simi-
lar. Thus, the o, for H2+ are also strongly divergent
but asymptotic (as we have numerically verified).
Further, the nonvanishing o., of H2+ have the same
sign (all positive) and are of the same order of magni-
tude as those of H for 0 & j ~ 16, although for j~ 1$
the former are somewhat less violently divergent. %e
have also computed high-order RS series of a number
of expectation values' via the PV-RR formalism, in-
cluding the kinetic- and potential-energy components
of the o, These, as well as a detailed account of the
present work, will be presented elsewhere.
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