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Observation of Modulational Instability in Optical Fibers
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We report the first observation of the modulational instability of light waves in dielectric material
using a neodymium-doped yttrium aluminum garnet laser operated at 1.319 um and single-mode
optical fibers with anomalous group-velocity dispersion. The observed results are in good agree-
ment with the theoretical predictions. The relationship between the modulation instability and
parametric four-wave mixing and the interplay with stimulated Raman and Brillouin scatterings are

also presented.

PACS numbers: 42.65.—k

Modulational instability is a process in which the
amplitude and phase modulations of a wave grow as a
result of an interplay between the nonlinearity and
anomalous dispersion. The process is analogous to the
trapping of a quasiparticle in a potential generated by
its own intensity [see Eq. (1) in the following]. Modu-
lational instability has been studied for waves in
fluids,! plasmas,? and dielectric media.®> Hasegawa and
Brinkman* have analyzed the modulational instability
of light waves in a glass fiber. However, to our
knowledge, there has been no experimental verifica-
tion of modulational instability for an electromagnetic
wave in a dielectric material. In this paper, we report
the first experimental observation of the modulational
instability using single-mode fibers. We study the
dependence of the modulation frequency upon the
fiber parameters and the laser power. Threshold
powers are compared for the onset of the modulational
instability and the stimulated Raman scattering.

The wave propagation in the lossless fiber in the
group-velocity coordinate is described by the nonlinear
Schrédinger equation:
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where & is the complex electric-field amplitude for
the light-wave envelope, o is the angular frequency, z
is the distance of transmission, 7=1—z/v,, tis the
time, v,=(9k/dw)~! is the group velocity, n,
(=1.22%10"22 m?/V2 for silica®) is the Kerr coeffi-
cient, and k"' =8%k/8w2.” It has been shown* that the
cw solution & (z) of Eq. (1),

#o(z2) =& oexpl—i(wny2c)| &,l%z], (2)
is unstable for a small perturbation (or modulation)

% ., where |# | << |&,| and & ;xexpli(Kz—Q1)].
Plugging the perturbed electric field

E(z7)=8,+ &,(z7)]expl — i(wny/2c)| &l%z]

into Eq. (1) with some mathematical manipulations,
one can obtain the dispersion relation for the modula-
tion wave number K and modulation frequency  as

follows:
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It is apparent that if k"' n, is negative and for the
modulation frequency

Q< Q,=[Qu/c)|(nyk") &IV,

K becomes purely imaginary and the perturbation
grows exponentially. The maximum amplitude growth
rate is equal to (w/2c)ny|&l?, which is independent
of fiber dispersion and is solely proportional to the
light intensity, and occurs at Q = Q ,/~/2, which is pro-
portional to the square root of power divided by
dispersion. It was further shown* that the instability
develops frequency modulations whose nth sideband
amplitude is proportional to E [ and is separated from
the carrier frequency by nQ./~2, n=1,2, .. ..

In the experiments, we use light from a mode-
locked Nd-doped yttrium aluminum garnet laser
operated at 1.319 um. The laser puts out 100-psec
(FWHM) transform-limited pulses at a 100-MHz rep-
etition rate. The fluctuation in the power is less than
5%. Since the expected modulation period is on the
order of 2 psec, these pulses provide a quasi-cw condi-
tion. We take the approach of introducing no initial
perturbation.® Instead, we detect the stimulated
modulational instability (i.e., amplified spontaneous
emission), which builds up from the spontaneous
noise as a result of the exponential gain and is expect-
ed to occur at the modulation frequency of the max-
imum gain. A spectrometer and a second-harmonic
autocorrelator are used for monitoring the modulation
frequency and the corresponding period.

We use two sets of fibers. The first’ has —2.4-
psec/nm-km dispersion (zero dispersion at 1.29 um),
and consists of 0.5-, 1-, and 2-km lengths. The
second!® has —3.75-psec/nm-km dispersion (1.275
wm), and consists of 0.5- and 1-km lengths. We have
observed the modulational instability in all of them.

Figure 1 shows typical power spectra as a function of
power in the fiber. The fiber parameters are as fol-
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FIG. 1. A series of power spectra measured at the output
end of the fiber as a function of the peak power: (a) low-
power (or input) case, (b) 5.5 W, (c) 6.1 W, and (d) 7.1 W.
The vertical scales in (b), (c), and (d) have the same nor-
malization factor. The modulation-frequency sidebands are
clearly shown in (b), (¢), and (d).

lows: — 2.4-psec/nm-km dispersion, 1-km length, 60-
um? geometric core size, 0.67-dB/km loss at 1.319
pm. The fiber power is varied by adjustment of the
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FIG. 2. A typical autocorrelation trace in the presence of
the modulational instability. The zero delay occurs at the
central maximum. The zero for the vertical axis is marked
by an arrow. The interval between the oscillation peaks,
which corresponds to the modulation period, is 2.2 psec in
this case.

axial position of the 20X coupling-microscope objec-
tive. The peak value is obtained by multiplying the
time-averaged power, measured at the output end of
the fiber, by a duty cycle of 100. Figure 1(a) shows
the spectrum for the low-power case, which is indistin-
guishable from the laser spectrum. Figure 1(b) shows
the emergence of two symmetrical sidebands at 5.5 W
peak power. Theory predicts a power gain of exp(16)
for this case, which accounts for the observation.!!
Figure 1(c) shows the growth of two sidebands and the
emergence of the predicted secondary sidebands at 6.1
W. The height of the primary sidebands is about 6
times taller, while the increase in power is only 11%.
This is a clear evidence of exponential gain. Figure
1(d) shows the further growth of these sidebands at
7.1 W. Considerable amount of pump depletion is
shown. The broadening and the splitting of the central
peak in Fig. 1 are due to the self-phase modulation of
the 100-psec finite duration in the input pulses.® The
finite width in the sidebands is partly because the in-
stability starts from spontaneous emission, and partly
because the laser pulse is not rectangularlike. Figure 2
shows a typical autocorrelation trace. The observed
period corresponds to the inverse of the sideband fre-
quency very well. The limited modulation depth and
the damping in the oscillation of the autocorrelation
trace are due to the finite width of the spectral peaks.
Figure 3 shows the modulation period as a function
of fiber power and dispersion. The triangles and cir-
cles are experimental data; the solid lines are theoreti-
cal predictions of Eq. (3) obtained without pump de-
pletion. Let us first look at the data from the —2.4-
psec/nm-km and 1-km fiber. The observed period is
2.28 psec for 5.5 W power [see Fig. 1(b) also]. This
corresponds to the theoretical value for a choice of an
effective area of 97 wm?, which is about 60% larger
than the geometric core size.!> The deviation of the
data from the theoretical curve at higher powers is due
to the pump depletion, as is illustrated in Fig. 1(c) and
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FIG. 3. The modulation period vs the input fiber power.
The triangles and circles are the experimental data from the
—2.4- and —3.75-psec/nm-km dispersion fibers, respectively.
The solid lines show the theoretical predictions without the
pump depletion.

1(d). Let us now look at the data from the —3.7-
psec/nm-km and 1-km fiber. Notice that the period is
2.83 psec for 5.5 W, which is 1.24 times longer than
2.28 psec. The period ratio is exactly the square root
of the dispersion ratio.

A threshold behavior, which is a signature of the ex-
ponential growth, is evident in the experiments. At
low powers, no oscillation in the autocorrelation trace
is found; at a certain higher power, large fluctuations
in the autocorrelation trace are seen, which is due to
the fluctuation in the laser power; at still higher
powers, the autocorrelation trace becomes stable and
exhibits oscillations with a power-dependent period.
We make a rough check of the threshold-power depen-
dence on fiber length. [Note that the loss in the long-
est fiber (2 km) is less than 25%.] Here, the threshold
power is defined as the power for observing a power
spectrum shown in Fig. 1(b) [i.e., about a gain of
exp(16)]. The values are 10, 5.5, and 3 W for 0.5-, 1-,
and 2-km lengths, respectively. The product of
threshold power and length is approximately constant.

At power levels above 10 W for 1-km fibers, side-
bands start to become asymmetric. This asymmetry is
introduced by the Raman scattering, i.e., gain for the
Stokes component (red-shifted) and absorption for the
anti-Stokes component (blue-shifted).!* Figure 4
shows the spectra when the Raman scattering becomes
important [4(a)] and dominant [4(b)]. The threshold
power for seeing the Raman effect is roughly inversely
proportional to fiber length, as it should be.
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FIG. 4. The power spectra when the Raman gain (a) is
important at 15 W and (b) becomes dominant at 25 W of the
fiber power.

To prove that the modulational instability exists in a
cw or a longer-pulse light wave, we perform the exper-
iment using light from a Q-switched Nd-doped yttrium
aluminum garnet laser, which puts out 1-kHz, 750-
nsec (FWHM) pulses. The pulse duration is about 6
orders of magnitude longer than the modulation
period. We observe similar spectrum shown in Fig.
1(b) at the same peak power. At slightly higher
powers, the Brillouin scattering becomes dominant.
The threshold power for the Brillouin scattering in this
case is much larger than the reported value for a
narrow-linewidth light source,!* and is believed due to
the multilongitudinal modes in the Q-switched pulse.

We note that the modulational instability is physical-
ly analogous to stimulated parametric four-wave mix-
ing.’® In the four-wave mixing usually a multimode
fiber is required to satisfy the phase-matching condi-
tion, while in the modulational instability, the phase-
matching condition is self-generated by the nonlinear
change of index (An=3n,|&|?) and the anomalous
dispersion, and hence is susceptible of occurrence in
single-mode fibers.

In conclusion, we have seen the modulational insta-
bility in the anomalous dispersion region of single-
mode fibers. The absolute value and the dependence
of the modulation frequency on the fiber parameters
and power agree with the theory. Because of its high
gain, the modulation instability may present a problem
for the coherent fiber communication using wave-
length division multiplexing. On the other hand, the
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modulational instability may be used to generate a soli-
ton train at high repetition rates.?
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FIG. 2. A typical autocorrelation trace in the presence of
the modulational instability. The zero delay occurs at the
central maximum. The zero for the vertical axis is marked
by an arrow. The interval between the oscillation peaks,
which corresponds to the modulation period, is 2.2 psec in
this case.



