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We find a spherically symmetric solution to the gauged SU(2) L S SU(2) tt chiral model. It corre-
sponds to a new classical solution to the steinberg-Salam model in the limit of infinite self-coupling
and sin H~ = 0. It has an energy of 11.6 TeV and is classically unstable under small perturbations of
the fields. Quantum corrections may stabilize the solution via the introduction of higher-order
terms in the effective action. %e then investigate the solutions when a particular choice of a
correction, the Skyrme term, is added to the Lagrangean. The energies of the (presumably) classi-
cally stable solutions are in the teraelectronvolt region.

PACS numbers: 12.15.—y, 11.10,Lm, 11.1S.Kc, 14.80.6t

As accelerator energies approach the electroweak-
symmetry-breaking scale and beyond, it may become
feasible to observe nonperturbative effects in the
Weinberg-Salam model. In particular, a number of au-
thors'z have investigated the possibility of nontopo-
logical soliton solutions to the classical equations of
motion.

Concurrently, there has been a recent revival of in-
terest in soliton solutions in the nonlinear chiral
model. 3 ' These solitons discovered by Skyrme3 over
twenty years ago are topological in nature, where the
topological index is associated with the baryon
number. s

When the Higgs-boson mass MH in the Weinberg-
Salam model goes to infinity, the model becomes
equivalent to a gauged chiral model. Some authors
have considered the possibility of solutions to the
Weinberg-Salam model (with MH ~) which are
analogous to Skyrme's soliton. s 9 In this Letter we
shall exhibit such a solution. The solution is nontopo-
logical in nature. This is essentially due to the fact
that the boundary conditions of the gauged chiral
model differ from those of the ungauged chiral model.

In Skyrme's model a fourth-order term (the
"Skyrme term") was added to the standard chiral-
model Lagrangean. This term insured the existence of
a static solution, since it scaled differently from the
usual chiral Lagrangean. For us, no modification of
the Weinberg-Salam model is required for this pur-
pose. The gauge-boson kinetic-energy term scales dif-
ferently from the Higgs-boson Lagrangean, allowing
for the possibility of a localized solution. (In the
Skyrme model, the Skyrme term may be replaced by
an interaction with vector mesons. Static localized
solutions to such models have been found by Adkins

and Nappi. 'o)

Unlike the Skyrme soliton, our solution is unstable
under small perturbations of the classical fields. Stabil-
ity" however may be recovered with the inclusion of
fourth-order terms like the Skyrme term in the effec-
tive Lagrangean. Such terms result naturally as quan-
tum corrections to the model. '2 We will discuss the
solutions with the (gauged) Skyrme term added, and
conjecture that they correspond to real particles.

We assume the standard Weinberg-Salam model
with a single Higgs doublet 4= (@t,@,). The Higgs-
boson Lagrangean is

42 4t

, -4t 4z,
' (2)

and then perform the polar decomposition M= hU,
where U 6 SU(2) and h is real. We shall make two as-
sumptions: (i) g'=0 and (ii) h is frozen" in its vac-
uum expectation value (h) =p, /2X & 0. Assump-
tion (i) is equivalent to our taking sin Ow= 0. As was
pointed our previously' it is necessary for finding a
spherically symmetric solution. It is hoped that since
sinzHw is small, we are not too far from reality. As-
sumption (i) leads to the global SU(2)t symmetry
U VUV, A„VA„V, V E SU(2). Assumption
(ii) is equivalent to our taking an infinite Higgs-boson
mass in the tree-level approximation. Applying (i)
and (ii) and adding the Yang-Mills kinetic-energy term

where&„ is the SU(2)L S U(1) covariant derivative,
N„= t)„—(ig/2)A„—(ig'/2)8„, A„=A„r It is.
convenient to define the matrix
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we get

~c +~~

,
' (h-)'Tr(D„U)'(D U) —,

'—TrF„„F", (3)

where F„„=B„A„—B„A„—(ig/2) [A„,A„], and D„U
= B„U—(ig/2) A„U

Equation (3) is the classical Lagrangean for the

K"= (247r2) 'e"""i'Tr(D„UU Di, UU Dp UU + 4 gD

In the (ungauged) chiral model the charge q
=fd3x Ko is an integer. Finite energy demands that
U tends to a constant at spatial infinity. Space is then
compactified to a three-sphere which is mapped by U
to the SU(2) manifold. The integer q is associated with
the homotopy group m3(SU(2) ) = Z. Now when
SU(2) L is gauged, we only have the condition

D~ U- 0 at spatial infinity. If we like, we can choose
U 1 at ~x~ ~ resulting in an integer-valued q, but
this procedure has no gauge-invariant meaning. On
the other hand, the charge q= fd3x K is gauge in-
variant, but it has no topological meaning. Only in the
case where A„ is a pure gauge need it be an integer. In
what follows we show that there exists a static localized
solution to the equations of motion, with q not an in-

teger. One can of course claim that q being an integer
means that we have a topological configuration. How-

ever, under a gauge transformation G with G —1 at
infinity, q changes by an integer, and therefore no

gauged SU (2) r S SU (2) it chiral model [with SU (2)L

being the gauge group]. Chiral models are known to
have an identically conserved current

K~ = (24~') "-~""~Tra„UU'a„UU'e, UU' . (4)

For us K" is not meaningful since it is gauge variant.
A gauge-invariant current K" can instead be defined
which, however, is not conserved:

„UU'F„,), "d„K"= —(g /128m )ei'""i'TrF„„F„p. (5)

physical significance can be assigned to it.
We specialize to the spherically symmetric config-

uration. By spherical symmetry we mean that the
fields are invariant under simultaneous rotations in
Minkowski space and the internal SU(2) v space:

—2i e iikx~'7 k U+ [Ti, U] = 0,

—2ieijkx~V kAi+ [Ti,Ai] —2i ~,ikAk = 0.

We work in the gauge AD=0. The general solution to
(6) is

U = eosH + I T ' x slnH,

p s —p(xx T);+ T, + — (T x)x
r I'

——A, =

where 8, a, p, and 5 are functions of the radial coordi-
nate r and x; = x,/r. After substituting (7) into the ex-
pression for the energy we find

E= (8n (h)/g)„l dp[2p 2[a2+P ——,']2+ (a'+2Po )2+ (P' —2oa)2+.p2(8'+o. )2

+ 2 (a + sin28 ——,
' )2+ 2 (p + sinH cosH )2 }. (8)

Here p=g(h)r/2 is a dimensionless variable, the
prime denotes differentiation with respect to p, and
o. =Sp.

Only two of the four variables 8, a, p, and 5 in (8)
correspond to dynamical degrees of freedom. This is
so since (i) o appears in (8) with no derivatives and
hence is an auxiliary variable; (ii) there is a residual
U(1) gauge symmetry,

can set equal to zero. By requiring finite energy we
have 8(~) = —,'mm, a(~) = ( —1) —,', where rn is an

integer.
Our method for solving Eqs. (10) is first to rewrite

them in first-order form. We then use the asymptotic
expressions for the solutions, i.e. ,

8 Bp, a —,
' +Ap2, (11)

8 8 —X(r), a a cos2X(r) —psin2X(r),

P a sin2X(r) +P cos2X(r), o- o. + X'(r). (9)

We shall eliminate the gauge freedom by setting p =0.
In this gauge the equations of motion are

for p 0

8 ,
' mn—D[1—+(J. 2p) ']e

a- ( —1) —,
' + C[1+(&2p)-']e-

(12)

[p2(8'+ o.) ]' = 2a sin28,

a" = (4a/p ) (a ——,
' +p o- ) + 2a —eos28,

o = —p'8'/(p'+ 4a').

(10)

The boundary conditions at the origin result from
the demand that Eqs. (7) be well defined. We have
8(0) =Trn, a(0) = —,', where n is an integer, which we

for p —~, and integrate both (ll) and (12) to some
finite p = po. By adjusting the parameters A, 8, C, and
D we then match the values of the functions and their
derivatives at po. One would expect that the
minimum-energy solution occurs when

~ m ~

= 1. How-
ever, we were unable to fmd solutions for ~m ~ odd,
because our first-order equations are singular when a
goes through a zero. For m = 2 we were able to find a
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solution. Its energy density is localized inside a small
fraction of a fermi, and for the total energy we find
F. = (8m. (h)/g) (1.79); using Mit = 83 GeV and

g = 0.67, then E = 11.6 TeV.
Upon substituting Eqs. (7) into the expression for

the charge q, and applying the gauge condition P = 0,
we get q =—0.18 for the above solution.

In the Skyrme model the topological charge q is
identified with fermion number. 5 Similarly, it has
been claimed that the charge q is identified with fer-
mion number in the Weinberg-Salam model. t4 The
computation is performed by a coupling to fermion
fields and application of a derivative expansion. The
latter is valid if the inverse fermion mass is smaller
than the "size" of the soliton. Thus if (a) there exist
sufficiently heavy fermions and (b) our solution corre-
sponds to a state in the quantum theory, it is expected
to have very exotic quantum numbers.

Concerning (b), the existence of a state in the quan-
tum theory is in general insured for solutions which
are stable under perturbations in the classical fields.
This, however, is not the case for our solution. It is
not difficult to find a variation Be(p) which lowers the
energy of the solution. Hence we do not have a local
minimum in the energy.

Even though the solution is classically unstable it
may be possible to recover stability in the quantum
theory. In the quantum theory higher-order terms ap-
pear in the effective action. '2 For the Skyrme model
these terms were necessary for the existence of a soli-
ton solution. For us they could possibly cure the clas-
sical instability. An example of such a term is

(32e2) 'Tr[U D„U, U D„U]2, (13)

which reduces to the Skyrme term in the limit g 0.
By continuous variation of the parameters g and e it is
possible to deform our solution (corresponding to the
limit e ~) to the Skyrme soliton solution
(g 0).'5 The Skyrme soliton was shown to be clas-
sically stable. '6 Thus in traversing a path in the g-e
plane from our solution to the Skyrme solution we
should encounter a transition from a classically un-
stable solution to a stable one. So there could exist
some range for the parameter e which admits stable
solutions. Although it is often easy to find unstable
modes of a particular unstable solution, the proof of
stability is in general very difficult. '6 After adding the
gauged Skyrme term [Eq. (13)] to the Lagrangean, we
solve the corresponding equations of motion. For
each value of (g/e) 2 & 0.39 there are two solutions
[for higher (g/e) no solutions exist]. The first is clas-
sically unstable and reaches the previously discussed
solution as 1/e goes to zero. The second solution ap-
proaches the classically stable solution of the ungauged
Skyrme model as g 0, and is likely to be classically
stable too. Energies for both solutions are depicted in

2I
0 Q. I 0.5 0.4

2
(g/e j

FIG. 1. The energy in teraelectronvolts of the solutions to
the equations of motion with the gauged Skyrme term [Eq.
(13)] added, as a function of (g/e)2. g= 0.67 is the stand-
ard coupling and e appears in the coefficient of the Skyrme
term. The arrow denotes the value of (g/e)2 if e = 5.4 as in
strong interactions. Values of q =fd3x K [see Eq. (5)] are
given near the curves.

Fig. 1. q is given there for selected values of (g/e); it
approaches unity (i.e. , q q) only as the lower
branch of the solution approaches the Skyrme solu-
tion, where the gauge degrees of freedom become
unimportant.

In the case of unstable or saddle-point solutions, the
quantum mechanical relevance of the solutions is an
open theoretical question. '7 Already quite a few ex-
amples of saddle-point solutions have been discovered
in the Weinberg-Salam model. ' One which is
thought to have physical significance is the sphaleron
solution of Klinkhamer and Manton. '3 It corresponds
to an energy maximum along a noncontractible loop
(NCL) of field configurations which passes through
the vacuum. Its energy Eo=—10 TeV is the height of
the harrier for tunneling between topologically distant
vacua. Such processes are known not to conserve
baryon number. Tunneling via instantons is negligibly
small'; however, baryon-number-nonconserving pro-
cesses may be greatly enhanced if energies of order Eo
are readily available, as in the time of the very early
universe.

Unlike in Ref. 13 our solutions are neither associat-
ed with baryon-number nonconservation nor with
NCL's, since we are at MH = ~.2o The first fact results
from the vanishing of the integral over the anomaly,
and the second one from the absence of a zero for h.

The lower branch of the solutions may correspond
to real particles (in analogy with the nucleon) which
can be called "weak skyrmions, " of mass of the order
of teraelectronvolts. If 1/e = 0.2 as in strong interac-
tions, then E = 3 TeV, thus raising the exciting possi-
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bility of directly observing weak skyrmions through
the process of longitudinal- W-boson fusion in future
colliders.

In a future publication we will discuss in detail our
solutions, noncontractible loops in the limit MH= ~,
baryon-number nonconservation, quantization, and
phcnofn0001ogp.

One of us (G.E.) would like to thank the members
of the Institute of Theoretical Science for their hospi-
tality. We acknowledge helpful discussions and
correspondence with N. G. Deshpande, F. R. Klinkha-
mer, N. S. Manton, S. R. Sharpe, and N. Weiss. This
research was supported by the U. S. Department of
Energy under Contracts No. DE-F606-85ER40224
and No. DE-F606-85ER40201.

Note added. —After completion of this work we ob-
tained a report by AmbJ|srn and Rubakov2' where stat-
ic solutions were found to the equations of motion
resulting from Eqs. (3) and (13) for various values of
g/e&0. We agree with their energies, but disagree
with their conclusions about stability (contrary to their
claim stability was not demonstrated by them for any
g/e) and about baryon-number nonconservations
(there are none for MH=~). Furthermore, because
of their coordinate rescaling they could not discuss the
solution in the pure Weinberg-Salam model (g/e =0)
displayed here.
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