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The graviton propagator in a de Sitter background is found to be divergent. We show that as a
consequence of this divergence, de Sitter space is not a solution of the equations of motion of the
complete theory. If we start from de Sitter space as a classical ground state, quantum corrections
change it into flat Minkowski space.
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An outstanding problem in the theory of gravitation
is the observed vanishingly small value of the cosmo-
logical constant. ' In perturbation theory this parame-
ter can assume any value and one has to fine tune it to
zero in order to have a vacuum state corresponding to
flat Minkowski space. Several attempts have been
made to argue that the zero value may be preferred
dynamically and in this Letter we want to discuss a
new approach along this linc. %e shall present only
our method and results and we shall leave all technical
details for a lengthier publication. Although all our
formulas and conclusions can be trivially extended to d
dimensions, in this Letter we shall restrict ourselves to
d =4.

Our starting point is the observation that the propa-
gator of a massless scalar field in four-dimensional de

Sitter space is singular. ' To be more precise, let us
consider a scalar field described by

~ = —,
' 4 —g [gt'"(t)„&)(it„&)—ttt'0'l.

We choose the background metric of the form

g„„=g„„=(t'a')

with g„„ the flat Minkowski metric. The Lagrangean
(1), after some algebra and a field rescaling, becomes
W= —,qbD @ with

D i = —i102 —k2+ t 2(2 —rrt2/a )

The inverse of the operator D ' depends on the initial
conditions one chooses to impose, but for a choice
which preserves the symmetries of de Sitter space, D
is given by

D(x, t;x', t') = (tt') '(4m) 21 ( —,
' —v)1 ( —,

' +v)I (—', —v, —', +v, 2;1+a2(72/4), (4)

where a-2 is the invariant distance

o'= (a'tt') '[(t —-t')' —(x —x')'],

v = ( —', —m /a )'t, and F is a hypergeometric function. We see that for m2 0 the propagator develops a pole of
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the form I/m2.
Our argument will be based on the fact that the

same pathology occurs also for the graviton propagator
in de Sitter background. Let us first prove this state-
ment. We start with the Lagrangean

~=4-g [- (2/K')w +Al. (5)

We expand around the background given by Eq. (2)
and we write g„„=g»+)))„„.The scalar curvature of
the background is R = —12a =Ax . We must now

I

choose a gauge, isolate in (5) the quadratic part, and
solve the corresponding equation of motion in order to
find the graviton propagator. This is quite lengthy and
tedious, and so we try to find a gauge in which the dif-
ferential equation reduces to that of the scalar field
whose properties have been studied in the literature.
We found it convenient to have as much gauge free-
dom as possible and we promote the Lagrangean (5)
into a locally conformally invariant one by introducing
a scalar compensating field sfs(x):

W =4-g [--,'(a„O)(a„~)g»"- —,', ~(v+y)'+) (v+4)'],
where conformal invariance is spontaneously broken by the vacuum expectation value of 4(x) which we wrote as
qb(x) + V with V = 246/~. The coupling constant X is equal to A~ (24) . We wrote the Lagrangean (6) in four
dimensions but it can be extended to arbitrary d, still preserving local conformal invariance. 6 7 Now we can impose
five gauge conditions and we take them to be

ho„= 0, hl'= 0. (7)
It is straightforward to compute the graviton propagator in this gauge. We must expand (6) around the back-
ground, and keep only terms quadratic in the fields. After some algebra, diagonalizing the h —@ terms and rescal-
ing the fields we obtain ~- —,

'
/t "DJkJ

hkt with

D, «I
——lim [(—a2o —k +2/t )q;kqft —2k v);k~p+( 'v],gv]k)1,g-0 (8)

[gp(2) + gp(1) + Cp(0-s) + D (p(0-scu) + p(0-rus) + Ep(0-ru) ]
—1

where ao,, = k, k, /k2. The last term proportional to g
' is due to the fifth gauge condition h = 0. We can invert the

operator (8) by introducing the complete set of three-dimensional projectors for symmetric rank-4 tensors P(2',
P'", P'0 '"', P'0 "'), P(0 '), P'0 "' whose precise definition is given by Antoniadis and Tsamis7 and van
Nieuwenhuizen. s We only notice that P(2) is the projector for the transverse and traceless spin-2 part. In terms of
these operators we can show that

p(2) + p(i) p(0-s) + D (p(0 —scu) + p(0-rus))
A 8 D2- CE D CE- D2

In our case the operator (8) is of the form of the left-hand side of (9) with the identification

A = —a' —k'+2/t', 8=3 —k', C=A+2g ', D= J2g ', E=A —2k'+g-'.

P(0 ol) (9)

(10)
We see that A, whose inverse is precisely the coeffi-
cient of the transverse part of the propagator, equals
the operator given by (3) with m2= 0.9 It follows that
at least this part contains the singularity of the mass-
less scalar field.

We want to emphasize at this point that this result,
which is valid in aII dimensions, is not at all a feature
of the special gauge we have chosen. The artificial
conformal invariance was only introduced for conven-
ience. We could start directly from the Lagrangean of
Eq. (5), with no auxiliary 4 field. Here it is con-
venient to ~rite h„„=H„„+ 4 g„„h and we use a co-
variant gauge D"H„„=0. In this gauge 0„„ is
transverse and traceless. In terms of these fields the
quadratic part of Eq. (5) is

—3', h( — ——,'R)h, (11)

where all derivatives are covariant with respect to the

background. It is easy to see that the H„„propagator
is nonsingular. The simplest way is to observe that the
operator —c3 + —,

' 8 applied on transverse and traeeless
second-rank tensors has no zero modes on S4, which is
the Euclidean version of de Sitter space. '0 On the oth-
er hand, the operator —cl ——,'R for the scalar part h

does' and this signals the presence of a singularity in
the h propagator. Notice that, in this gauge, this is not
an unphysical singularity. To see this, we can intro-
duce a massive scalar matter field and compute the
two-particle scattering amplitude. The singularity due
to the one-h-exchange tree diagram does not cancel.
Although a covariant gauge sounds simpler we prefer
to continue our calculation in the gauge (7) for essen-
tially two reasons: (i) In this gauge we are able to ob-
tain the complete form of the graviton propagator, not
just its singular part. (ii) It is only in the ho„——0
gauge that the identification of the physical com-
ponents is straightforward; they belong to the
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(12)

transverse and traceless part of h;, . In the rest of this
Letter we shall show that, as a result of the singular
nature of the propagator, the ground state changes into
flat Minkowski space.

An immediate consequence of our result is that a
consistent quantization around a de Sitter background
requires an infrared regularization. The simplest
choice is a term linear in the quantum field h and so
we add to the effective Lagrangean a term rh„", where
r is a parameter with dimensions [mass]". This regu-
larization breaks local coordinate as well as conformal
invariance and gives a mass to the graviton. Con-
sistency of the equations of motion requires the addi-
tion of a term c4(x) with c equal to Sr/ V. At the end
the limit r 0 must be taken. "

Let us now state our program: The theory, in its
minimal form, contains a mass scale K

' or, more
conveniently, V and two dimensionless parameters A.

and r —r"/ V4. Every physical quantity can be comput-
ed as a function of them. We shall concentrate on the
curvature R. It is obtained by setting equal to zero the
coefficient of the linear term in /t ~ in the effective ac-
tion. This coefficient is given by the sum of the gravi-
ton tadpole diagrams. In the tree approximation we
find

R~0~ =24(X+2r) V.

At the limit r 0 we obtain R =AK as before. At
higher orders we must introduce a suitable ultraviolet
cutoff and, in practice, we shall use dimensional regu-
larization. The result will be a function R ( V, X, r, e),
where e = 4 —d. The physical value is obtained by first
taking the limit r 0 and then letting e 0.

Of course, we are not able to sum exactly the series
of tadpole diagrams and obtain the exact value of R.
Therefore, we must use some kind of approximation.
In this Letter we shall present, as an illustration, the
results of a first-order calculation with only one-loop
diagrams taken into account. In order to make this
truncation consistent we need an expansion scheme
which makes one-loop diagrams of the same order as
tree diagrams and all multiloop diagrams of higher or-
der. This is the strategy followed by Coleman and
Weinberg'~ for the study of massless scalar QED. For
this we need two coupling constants, one much larger
than the other, and the simplest way to introduce a
second coupling constant is to add to the Lagrangean a
term proportional to R . %e could have considered
the complete fourth-derivative theory, which contains
one more term (for example, R„„R""),but this only
complicates the computation without adding any new
feature. The conformal extension of a theory with R
and R terms can be written as

f

~ =J—g ————g~'(8 4)(li 4) ——R4 + A4 +rh" +c4,1 C]4 2 4

2 2
(13)

where u is a new dimensionless coupling constant. We prefer to work with Lagrangeans containing only first
derivatives and this can be easily achieved with the introduction of an auxiliary field F(x). After some rather
lengthy algebra, we rewrite (13) in the classically equivalent form:

~ = 4 —g —,
' (B„f)(8„f)&"——,' (8„ )(t)„ )&"— [( + )' —f']

2 V2
+ r"h " + c—( cr +f ),

.V (14)

where we have gone through the following steps of
field redefinitions: ratic forms we introduce new fields:

1 Ra4 ——4, 4 =C —F,2+2 6
(15a)

p(x) = (r(x) + —,
' f(x),

/t„'„= /t„„+2g„„o'/&, (16)
F' = F —vF, 4' =4 —vg„V = v@+eF, (15b)

cosh'
f sin hey

1—sinhco 4
coshm

VF
SlIlhm =

V

U@
cosh') =, v= (uq~, —uF)'~~.

U

(15c)

The Lagrangean (14) is still not very convenient for
calculations because it contains nondiagonal terms bi-
linear in h, a. , and f. In order to diagonalize the quad-

in terms of which there are no mixed propagators. We
are finally in a position to compute the curvature R, in
terms of the independent parameters of our theory
which we choose to be o, , ~, and V. In the tree ap-
proximation, the vanishing of the coefficient of the
linear term in h gives

—8 v —12'. V vF + 24~ V" + 48r V = 0.

On the other hand, Eq. (15a) gives for uF

uF = R/6 Vo. .
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The combination of (17) and (18) yields the value of
Rto~ given in Eq. (12). At higher orders we must
compute all tadpole diagrams. The following remarks,
results of a rather lengthy although straightforward cal-
culation, simplify this task: (i) Only graviton internal
lines give divergent contributions when f goes to zero.
(ii) For the purposes of this computation, the three-
graviton coupling constant turns out to be 8 v while
each graviton propagator brings a factor I/v'. (iii)
For perturbation theory to be meaningful we must as-
sume that a2 (& 1. In fact, in this paper, we shall also
assume that o.2 &( A, ; in this case V2/v2 is of order e2.
With these remarks in mind, the one-loop corrections
to Eq. (17) take the form

(~ + a/r)~' Zv'-+24), v4+4Stv4=0, (19)

~here we have omitted terms of order n . The term
proportional to R comes entirely from the one-loop
calculation. We have split its contribution into two
parts. The only diagram which contributes to the 8
term, the one which diverges when r 0, is the gravi-
ton loop. All others, scalar as well as Faddeev-Popov
ghost loops, contribute only to A. Let us stress once
more that (19), although extremely condensed, is just
the result of an explicit calculation of all tree and one-
loop contributions to the graviton tadpole. %e see
that, if we are allowed to truncate the loop expansion
and solve (19) for R, we find, at the limit r 0,
R =0. At this point the presence of the second cou-
pling constant a' is crucial. Indeed, one can verify
that the two-loop diagrams contribute to Eq. (19)
terms of order a2R2 and similarly for higher loops with
increasing powers of the coupling constant. It follows
that, for a &( 1, it is consistent to keep only the
terms present in Eq. (21). We conclude that, although
we started with a de Sitter background space-time,
quantum corrections force the curvature to vanish. de
Sitter space is not a solution of the equation of motion.

Before closing we want to remark that a completely
nonperturbative proof should exist, similar in spirit to
the ones showing the absence of spontaneous breaking
of a continuous global symmetry in two dimensions, '

establishing an inequality of the form R «0, and thus
excluding the case of de Sitter space.
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