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Critical Behavior of the Three-Dimensional Dilute Ising Antiferromagnet in a Field
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We report results of large Monte Carlo simulations of an experimentally realizable random-field
system: the three-dimensional dilute Ising antiferromagnetic in a field. We find that the correla-
tion time diverges dramatically as T T, ; the results are consistent with a proposed new type of
activated dynamic scaling. The transition appears to be continuous, with effective critical ex-
ponents q = 0.5 + 0.1 and q = —1.0+ 0.3 for strong fields, away from the weak-field regime where
crossover effects distort exponent estimates. These strong-field exponents satisfy recently derived
inequalities.

PACS numbers: 75.40.Dy, 05.50.+q, 64.60.Cn, 64.60.Ht

The nature of the phase transition in random-field
Ising systems is a problem that has been challenging
both theorists and experimentalists for a decade now. '

Thanks to recent rigorous work2 the existence of a
finite-temperature phase transition in three dimen-
sions is now well established. The equilibration time,
T, for experimental random-field Ising magnets ap-
pears to increase very rapidly as this transition is ap-
proached from above, as seen in ac susceptibility mea-
surements, and can exceed experimental time scales
(hours or days) when the correlation length, g, is on
the order of 100 lattice spacings. 4

We have simulated the dilute antiferromagnetic Is-
ing model in a field on a simple cubic lattice, which is
a random-field system5 closely modeling the magnetic
systems studied experimentally. We find that the
correlation time does indeed increase very rapidly. In
addition, we find that conventional dynamic scaling, in
which correlations between measurements separated
by a time interval t scale as functions of t/r, does not
hold for this system. This is in agreement with a re-
cent suggestion that the appropriate scaling variable is
instead 1nt/in'. Our results are consistent with the
prediction

in' —g,
although to really test such a law requires looking at a
range of lnv- )) 1, which is not possible without hav-
ing a few orders of magnitude more computer time
available.

Here we report results obtained at temperatures and
fields where it could be verified that our samples
reached thermal equilibrium. Because 7. diverges so
rapidly, equilibrium could not be obtained very close
to the transition in strong fields. Therefore we must
caution that, as usual, all critical exponents we report
must be vie~ed as effective exponents, since they are
extracted from data taken at fairly small correlation
lengths.

The staggered susceptibility, X, scales as X —
g

We find

~ =0.5+ 0.1, (2)

which is significantly larger than the q= 02 5+ 0. 03
measured by Young and Nauenberg for the random-
field Ising model, and is large enough to satisfy the re-
cently derived inequality9 q~ —,'. The data in Ref. 8

(as well as the experimental data in Ref. 6) are taken
at a fairly weak random field and temperatures where
crossover from non-random-field (q = 0) to random-
field (q ~ —, ) critical behavior should be occurring.
This is presumably why a smaller value of q was mea-
sured. Our result (2) for 71, on the other hand, is ob-
tained from measurements at strong fields, away from
this crossover regime, and so should be more
representative of the random-field Ising universality
class. We have also performed simulations in a weak
field comparable to that used in Ref. 8, where we find
an effective exponent 71 = 0.3, which we again attrib-
ute to crossover.

For the disconnected part of the staggered suscepti-
bility, X "—( ", we find q = —1.0 + 0.3, which
satisfies, within errors, the inequalities 2(q —1)~ q ~ —1 and is in reasonable agreement with the
experimental measurement4 q = —1.15 + 0.1. The
correlation-length exponent that we measure is
v=1.3+0.3, which has large enough uncertainties to
be consistent with the various recent numerical and
experimental measurements. An expansion'0 to
first order in e=d —2 yields q= —, , q= —1, and v=1,
which are also in reasonable agreement with our
results. For the exponent in (1) we find an effective
exponent 0 = 0.9, which is less than expected from the
proposed scaling relation 8 = q —q = 1.5 + 0.4. This
discrepancy is probably not significant because of the
uncertainties involved in extracting the estimate of 0
from our data and the narrow range of in~ and g that
we have been able to study.

Finally, we do not see any evidence for a first-order
transition. Any hysteretic behavior that we have seen
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can be attributed to the very long equilibration times
of even a finite system near the critical temperature.

The model that we have studied has the Hamiltoni-
an

I.O—

o ('
~ X- I/2

H= $„ss,-h$s„ (3)
0

where the sums run over all nearest-neighbor pairs and
all sites, respectively, on an L x L x L simple cubic lat-

tice with periodic boundary conditions. Each spin is
present with probability p, independent of the other
spins. Those spins that are present take on values
s; = + 1, while those that are absent have s; = 0. Note
that the antiferromagnetic nearest-neighbor coupling
has strength unity (J=1). For each size lattice, tem-
perature, and field strength, we have looked at a
number of different realizations (distributions of va-
cant sites) sufficient to reduce sampling errors to an
acceptable level. The variation of measured quantities
can be substantial from realization to realization, par-
ticularly when the correlation length is large. The
simulations were performed on a special purpose com-
puter that executes the heat-bath algorithm. "

The bulk of our data are taken above the transition
temperature with p =70% along the path h/T =1.5.
Other fields and concentrations that we studied were
the path h/T=0. 6 and constant fields h =1.5 and
h = 0 for p = 70%, and the paths h/T = 1.0, h/T = 0.4,
and h = 0 for p = 50%. We concentrated on p = 70'/o in
order to be well away from both the percolation
threshold (p =31%) and the pure case (p =100/o).
We chose the path h/T = 1.5 in order to be well away
from the crossover to zero-field behavior and so we
would not approach the phase transition line in the h-T
plane in a highly oblique fashion, as would occur if we

kept h fixed at a value where dT, (h)/dh is large.
Along this path we studied 64 lattices with L =16, 22
with L =32, and 4 with L =64. For p =70% and
h = 0 we estimate the critical temperature to be
T, (Q) = 2.9 in agreement with earlier results of Lan-
dau'; along the path h/T = 1.5 we find T, (h )
= 1.50+ 0.15. That the critical temperature is roughly
cut in half shows that we are used a strong field. This
contrasts with the rather weak field chosen in Ref. 8,
which only reduced T, by approximately 13% from its
h =0 value. In Fig. 1 we show the inverse correlation
length, g ', and the inverse square root of the stag-
gered susceptibility, X ', as functions of temperature
for p = 70% and h/T = 1.5. We obtain the correlation
length by fitting the momentum dependence of the
staggered susceptibility x(q ) by a Lorentzian form for
q(( I, as is described in Ref. 8. The data presented
in this paper do not exhibit visible finite-size effects:
This is secured by comparing results from different lat-
tice sizes and presenting only data for L large enough.
For measurements of g and the susceptibilities,
L ) 2mg suffices, but the long-time portion of the
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FIG. 1. Inverse correlation length g
' and the square root

of the inverse staggered susceptibility X ', for p = 70% and
h/T = 1.5. The critical temperature here is estimated to be

T, (h ) = 1.50+ 0.15 from a fitting of these data by the usual
power-law form.

time correlation functions (see below) is somewhat
more sensitive to finite-size effects.

We must discuss the dynamics first in order to es-
tablish that the static measurements that we report
represent equilibrium properties. The dynamic scaling
behavior is also of interest in its own right, especially
because of the unconventional scaling, Eq. (1),
predicted. ' The order parameter and slowest mode in
this dilute simple-cubic antiferromagnet is the total
staggered magnetization, M . Therefore we have stu-
died its normalized time correlation function:

C (r) = (([M'(0) —(M'), ]

x [M'(r ) —(M'), ]),) „/L, 'x,

where the staggered susceptibility is

x = (((M'- (M'), )'),)./L'.

(4)

(5)

1299

(. . .), denotes thermal averaging, and (. . .) s
denotes an averaging over different realizations. Note
that we have normalized so that C (t = Q) = 1.

Our results for C(t) at p =70%, h/T=1. 5, and
various temperatures are presented in Fig. 2. The unit
of time is one Monte Carlo update per spin (MCS).
The conventional dynamic scaling Ansatz says that
C(t) should scale as some function of t/r, where r is
the correlation time. When plotted versus time on a
logarithmic scale, as in Fig. 2, the change in ~ from
one temperature to the next would then just shift the
C(t) curve without changing its shape. That such a
scaling Ansatz does not describe our data is apparent
from Fig. 2, where the decay occurs over larger and
larger intervals of lnt as T decreases and 7 increases.
The conventional scaling hypothesis also says r —(',
where z is the dynamic critical exponent. Here, how-
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FIG. 2. Time correlation function C (t ) for the total stag-
gered magnetization, Eq. (4), recorded with p = 70% along
the path h jT = 1.5 for T = 2.30, 2.10, 1.95, 1.90, and 1.85
from left to right. Solid lines are fits with the empirical form
given by Eq. (6).
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ever, we find that the measured average correlation
time grows faster than a power of (.

The critical behavior of the random-field Ising
model is thought to be governed by a zero-temper-
ature fixed point, where the dynamics of fluctuations
at long lengths ( is dominated by thermal activation
over free-energy barriers, scaling as (~, with
g=q —q. In this picture a new dynamic scaling hy-
pothesis has been suggested, according to which the
appropriate scaling variable is lnr/lnr rather than the
usual t/r, and the correlation time should diverge ex-
ponentially as in Eq. (1).

Our results are quite consistent with this new scaling
Ansatz. We find that the measured correlation func-
tions (4) indeed scale well as functions of 1nt/in', ex-
cept at very short times and higher temperatures,
where scaling need not hold. An empirical function
that fits the data reasonably well for t ) 20 MCS is

C ( t ) = Co exp (
—(lnt/in' )3 I. (6)

Correlation functions for several values of temperature
are shown in Fig. 2 together with fits by this function.
The constant Co is temperature independent and close
to unity; we have chosen Co ——0.97. We do not claim
that (6) is the correct form of the scaling function, but
merely that it describes the data well in the regime that
we are studying. The logarithm of the correlation
time, in', has been estimated along the path h/T =1.5
for a range of temperatures in two ways: (1) We have
found the temperature dependence of in~(T) that al-
lows us to scale the correlation functions at the dif-
ferent temperatures to a single curve, and (2) we have
have obtained a ln~ at each temperature by fitting with
(6). The measured values of lnr are shown in Fig. 3.
These two procedures give the same temperature
dependence of ln~, except at the very highest tempera-
ture T = 2.3 which is not fitted well, as do various oth-

FIG. 3. Log-log plot of the connected and disconnected
staggered susceptibilities, g and X ", and of the natural loga-
rithm of the correlation time, ln~, showing their dependence
on the correlation length (. Data are for p = 70% along the
path h/T = 1.5.

er reasonable ways of estimating lnv- that we have
tried. The results are consistent with Eq. (1) with an
effective exponent 8= 0.9, lower than the value of
about 1.5 estimated from the static measurements and
the proposed scaling relation 8= q —q. However,
there is a hint of an increase in the effective 8 at lower
temperatures, and estimated lower bounds on correla-
tion times closer to T, (h) which are not presented
here suggest that this trend continues and we may not
yet be in the asymptotic dynamic scaling regime. We
do not quote an error on our estimate of 8 because we
do not know how to estimate the possible systematic
errors due to our fitting scheme and because of the
rather narrow range of lnr and ( studied.

Let us now return to the static critical behavior.
Three-parameter fits of the usual form, X = A [T
—T, (h ) ] ~, for the susceptibility and correlation
length yield exponent estimates y = 2.0 + 0.5 and
v = 1.3 + 0.3, respectively. The exponent q in
x —g 'i can be estimated much more accurately be-
cause we need not estimate T, (h). Fitting a straight
line to the data in Fig. 3 yields q=0.5+0.1. The ex-
ponent for the disconnected staggered susceptibility

gdiS ( (Mt) 2) /L3 (2 —'Ii

is estimated to be q= —1.0+0.3; see Fig. 3. These
exponents satisfy, within errors, the recently derived
inequalities 2(z) —1) ~q~ —1. That q is so near
—1 means that the order-parameter exponent'
P= (1+q)v/2 is very near zero, which, when com-
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bined with the long equilibration times, may make the
behavior of the order parameter as a function of tem-
perature look like a first-order transition. We feel
that all the numerical, experimental, and theoretical
evidence reported here and elsewhere is consistent
with a phase transition that is continuous in equilibri-
um, but has an exponentially divergent correlation
time, Eq. (1), as T T, (h).

We have also measured specific heats; along the
path h/T =1.5 at p =70% the specific heat saturates
around T = 2.05 where (= 2.5, and for lower tem-
peratures is constant within our + 3'/o errors, showing
absolutely no tendency to diverge at T, . (Of course,
the specific heat decreases again below T, . ) This
result suggests that the specific-heat exponent n is
negative, and contrasts with the interpretation of the
birefringence data, which proposes a divergent specif-
ic heat at T, .

We also examined lattices with p =70'/o in uniform
field h = 1.5, where T, (h ) = 2.5. We found an effec-
tive q = 0.3 in the range 2.7 ~ T ~ 3.5. This is in the
region where crossover to random-field behavior is ex-
pected. Note that T, is suppressed approximately 13%
from its h = 0 value just as in Ref. 8, where they found

q = 0.25 + 0.03. Therefore the random-field strengths
are quite comparable and it is not surprising that simi-
lar values of q are measured. For h = 0 we expect and
find an effective 7) = 0.05; as the field increases the ef-
fective exponent must change to q= 0.5 for strong
fields. Thus the q=0.3 measured at intermediate
fields is quite consistent with a simple crossover and
should definitely not be viewed as a candidate for the
asymptotic T T, (h) exponent. The field h/T=1. 5
is, we believe, sufficiently strong that the effective ex-
ponent q=0.5+0.1 measured there might be a good
estimate of the asymptotic equilibrium q. We have
also looked at the more disordered case p =50'/o in
strong fields h/ T = 1.0, and again find q = 0.5.

We made some preliminary measurements in the or-
dered phase, T & T, (h ), for p = 70% and h/T = 1.5,

starting from the fully antiferromagnetically ordered
state at T = 0, h = 0 and warming up. We found that
this ordered state remained stable for T & T, (h) on
the time scales examined ( & 10 MCS). However, we
cannot verify that we reached thermal equilibrium,
especially close to the transition where equilibriation
times certainly exceeded 10 MCS. In this work we
did not attempt to study the "domain states" obtained
for T & T, (h) by field cooling, 4 o which are presum-
ably not in full equilibrium.

We thank D. S. Fisher for many useful discussions.
Note added. —Recent zero-temperature scaling

analysis of the ferromagnetic random-field Ising model
confirms that q is very close to —1.'
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