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We propose that random and incommensurate superlattices be fabricated to study the Anderson
localization of their plasma oscillations, which can be measured by Raman scattering. Specific con-
figurations are suggested which, by duality considerations, allow control of the wave functions rela-
tive to the mobility edge in the incommensurate case. Localization effects should be easily observ-
able with presently achievable superlattice parameters.

PACS numbers: 73.60.Fw, 71.50.+ t, 71.55.Jv, 72.30.+q

The new ability to position individual atomic layers
one by one, and thus to create crystals or "superlat-
tices" with prescribed properties, is a revolutionary ad-
vance which has inspired much recent work. ' A natur-
al way to exploit this power is to create superlattices
which test important theories. It is all the more in-
teresting if the theories in question are the simplest
prototypes of basic mathematical and physical prob-
lems, and if they have never before been directly test-
ed in the laboratory.

A rather obvious set of candidate theories are those
which deal with "electron" propagation in random or
incommensurate lattices. The central idea of this
genre of problem is that of Anderson localization and
of possible transitions (mobility edges) between local-
ized and extended states. The best studied case is
that of one-dimensional tight-binding Hamiltonians.
Then the results for the random lattice problem are
especially simple, as the eigenstates are always local-
ized. Incommensurate lattices in one dimension give a
rich structure which includes the possibility of a transi-
tion between localized and extended states as a system
parameter is varied. No very direct observation of
these properties, particularly in the incommensurate
case, has ever been made, however.

The possibility of constructing an incommensurate
or random superlattice has occurred to many workers.
However, observation of single-electron tunneling
currents between superlattice layers has only recently
been achieved. 5 Further experiments along this line
have a bright future.

It is well known, however, that the problem of local-
ization is not essentially electronic or quantum in na-
ture, but rather turns on the wave nature of the entity
involved. Thus, it is not necessary to think of indi-
vidual electrons in an array of quantum wells, but one
can instead consider collective motions of the elec-
trons. The phonons can also be studied, but their
properties are weakly modulated by the artificial struc-
tures most often constructed.

It is our purpose here to point out that the plasma
excitations in an artificially layered system serve ad-
mirably to illustrate the main results of localization
theory. The plasmons in periodic superlattices are al-

ready well understood. We thus imagine a sequence
of layers, labeled by integers l. Each layer itself is
translationally invariant in the transverse directions.
Thus the transverse wave number q is invariant, and
may be controlled by the experimenter. It is a good
approximation for our purpose to neglect the degrees
of freedom (subband structure) of the individual elec-
trons in each layer, and to treat them simply as a clas-
sical two-dimensional plasma embedded in three
dimensions.

Radiation Raman scattered from the superlattice has
intensity proportional to

1(q,k, cu) = XIm

Here k is the wave number perpendicular to the layer
and (q, k, tu) is the wave-number —frequency difference
of incident and outgoing photon. The L layers are
centered at distance zl. The dynamic polarizability is

tu + ituI —ptq

q Nt/m
(2)

In this formula Wl is the electronic areal density of the
1th layer, which is under the control of the experi-
menter and can be varied by a factor of more than 10.
The effective mass ml, in principle, can vary from
layer to layer as well, but we shall regard it as a con-
stant, m. The dispersion term p, = 37rNt/2m makes
an uninteresting small modification, and we shall drop
it from the formulas for clarity, although it has been
included in the numerical work. The linewidth param-
eter I could be made to depend on layer as well, but
we assume it is constant. In the ideal case, I 0 and
l~ 5(II ' —V). For realistic systems, I can be fixed
empirically, and is in agreement with theory. ' Its ex-
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istence is an important limitation on the resolution of
the experiment. '

Adjacent layers are coupled via the Coulomb poten-
tial given by

—q uzi
—z, i

V, = (2qre /Kq )e

The potential thus decays with an exponent controlled
in the experiment, rather than being long range. Thus
one is able to control the strength of the hopping
parameter in the tight-binding Anderson model
derived below. If there is one layer only, the Raman
intensity is independent of k, and peaks at the two-
dimensional plasma frequency, toq, where

coq = 27rNe q/Km. (4)

Here ~ is the dielectric constant and N is the electronic
density of the layer. We shall, however, use Eq. (4)
below, where N has the meaning of some nominal
"average" density, introduced for dimensional con-
venience.

We now introduce a notation which brings out the
relation of the Raman intensity to Anderson's tight-
binding model. Let T, =N/N, =t, . The intention is
to introduce incommensuration or disorder through
the parameters Tt, that is, through the control of the
density. One may also make z( random which intro-
duces "off-diagonal" disorder. We have studied this
possibility and will report on it elsewhere. Here we
take z( ——al where a is the constant interlayer separa-
tion. We take a as the unit of length. We call coq =E,
V„,= —co2e qit ' i (Iel'), V„=0, and hatt

=c0I N/

N(. A constant part of the parameter T( can be includ-
ed in the "energy" E. Then

1(q,k, o))

To illustrate numerically the results expected, we
parametrize T( by

T, = (coshqa —ci)/ sinhqo,

with fact i
~ 1 and gt ct ——0. We shall see below that for

qp (( q the variation of T( dominates favoring locali-
zation, while for qp » q extension is favored.

We have diagonalized Eq. (7) for L = 21 and chosen
t0 to be at a central (tenth) eigenvalue. " In Fig. 1 we
give the Raman intensity for four cases with c( the
cosine of a random angle. The most extreme cases are
(a) qo ——0.75, q =7.5, favoring localization, with I al-
most independent of k, and (b) the reverse case giving
results essentially identical to the periodic lattice in
this case of finite L. We have chosen also (c)
qo ——0.4, q =2.0 and (d) the reverse. This set is
motivated by the fact that present superlattices have
achieved a variation of a factor of 30 in density and 2
is the approximate upper limit of q reported by
Sooryakumar et al. ' However, we expect that more
extreme values can be achieved in time. The localiza-
tion length ( labels each curve.

We next give results for the incommensurate super-
lattice. We take c, =f(ttl + A. ), with f (x) =f(x + 1).
The incommensuration parameter a is irrational. We
take it to be the golden mean (J5 —1)/2 in the nu-
merical work. We let f (x) = cosx not only because it
is a very well-studied case but because of duality con-
siderations which we now discuss. If V„, connected
only neighboring layers there would be the important
simplification of Aubry duality. 3 Aubry duality is a
transformation (essentially a Fourier transform) which
carries extended states into localized ones and vice
versa, and which transforms the Hamiltonian into it-
self, but with new parameters. If the new parameters
are identical to the old, the Hamiltonian is self-dual,

2t —te —q lt —t'I t
—t

q ( (I (t p ( e

(I
(7)

Thus I~ g„iu"(k) ized(cu2 —cuz), with u" (k) = g e'"'
x wt"/tt. This displays the character of I as a local den-
sity of states, "local" in the momentum space
representation.

2

=N XIm e'" ' ' (5)m, E —o) T —V —iq
J

The wave function (density fluctuation) u, satisfies

cu Tt ut + X,, V„,ui, = Fut. (6)

The standard way of studying this tight-binding equa-
tion is to regard co as a parameter and E as an eigen-
value. It is experimentally more convenient to regard
E as a parameter and ao as the eigenvalue. Since
T( & 0 we may introduce ~(= t(u(. Then the orthonor-
mal eigenstates w(" satisfy
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FIG. 1. Raman intensity as a function of the longitudinal
wave-vector transfer for the random case. Four different
situations (as described in the text) are shown with their
respective localization lengths (g) labeled on the curves.
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and the states are between extended and localized.
This is clearly a very interesting critical situation,
namely, it is the mobility edge.

We wish to consider' a Hamiltonian dual to (7).
Aubry's transformation does not work. However, we
can make the related transformation

2mipg e 2mil(ap++
E Wp p l ( WI

where
"—2 2mi((ap + A. ) —q I(1

l

g( =~ e
—2mlp(a(+ a) —qPIP I

P
e

Then

qadi p I

p q p' p P P

Thus for q = qo, the Hamiltonian is self-dual. We con-
jecture that for q ) qo the states of Eq. (7) are local-
ized, while for qo & q they are extended. Note that for

large q = qo, the band of states is narrow. In the band
co = cuq and the usual Aubry duality is recovered.

Finally, we present the numerical results for the in-

commensurate case. Figure 2(a) gives the spectrum of
(7) for qo= 2.0 as a function of q. Notice how the
spectrum changes from the smooth structure charac-
teristic of the periodic lattice, q (( qo, to the "Cantor
set" structure for q =qo. In Fig. 2(b) we give the
tenth eigenstate for q =0.4, 2.0 in the extended and
critical ranges (qo=2.0 for both). For the localized
case we show the eigenstate for qo ——0.4, q = 2.0.

The numerical results for the Raman intensity in the
incommensurate case are shown in Fig. 3. Four cases
are plotted. In addition to the three above for which
the wave functions are shown, we show the results for
a second critical case, q =qo=0.4. As before, the ex-
tended case is quite close to that of the perfect lattice,
the localized case is considerably smoother, and the
critical case is intermediate.

To summarize, we suggest that experiments can be
performed with present technology which will depend
in a direct and understandable way on the Anderson
localization or extension of the wave functions of plas-
ma oscillations in superlattice systems. With perfect
frequency resolution the spectrum and Fourier
transform of the wave functions can be measured.
There are, of course, limitations to the resolution
which can be achieved. There will also be limitations
to the number of layers which can be studied. This
limitation will probably be not so much from the size
of the superlattice which can be constructed, as from
extinction effects on the photons. A better treatment
of the free surfaces and resultant surface plasmons'
will be made in a future publication. While it is not
yet clear that a detailed study of the wave functions at
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FIG. 2. (a) The plasmon spectrum as a function of the
conserved transverse wave vector q for the incommensurate
case with qo=2 (the mobility edge is at q =qo=2.0). (b)
An extended eigenstate (q =0.4, qo=2.0), dashed line; a
critical eigenstate (q =0.4, qo=0.4) at the mobility edge,
dotted line; and a localized state (q =2.0, q0=0.4), solid
line, for the incommensurate case.

FIG. 3. Raman intensity as a function of the longitudinal
wave-vector transfer for the incommensurate case. Two
critical mobility-edge situations (q = qo = 0.4 and q = qo
= 2.0), and one each of the extended (q = 0.4, qo = 2.0) and
the localized (q = 2.0, qo= 0.4) situations, are shown.
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the mobility edge will be possible by this method, it is

highly probable that large effects directly attributable
to localization can be observed. In many ways our pro-
posed way of studying Anderson localization effects is
better than the standard technique of transport mea-
surements in disordered systems since (as we show in

this Letter) the Raman intensity in our proposed ex-
periments is a direct measure of "one-electron" local
density of states, whereas conductivity measures two-

electron properties.
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