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Layer Hopping by Chains in Polymeric Smectics?
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A new, nonperturbative, feature of chain conformations in strongly ordered polymeric smectics is
found. Like the solitary hairpin defects in polymeric nematics, these features arise from the con-
finement of the chain, in our case spatial confinement by the smectic layers as well as the direction-
al restrictions of the nematic. This liquid-crystalline reduction in chain entropy is resisted by layer
hopping. Consequent exponential variation of chain dimensions is given by a simple kink argu-

ment, in accord with a systematic analysis.

PACS numbers: 61.25.Hq, 61.30.Cz

We investigate a general phenomenon in polymeric
liquid crystals—the competition between lack of
molecular rigidity, a large source of entropy, and
mesogenic ordering. This competition distinguishes
polymers qualitatively from their monomeric analogs,
for instance in the nature of their transitions.!:2
Another important consequence is the nonperturba-
tive, nonlinear behavior of chain conformations in
nematics (hairpins>!), and a new feature for smectics
predicted below. Both as a specific example and to in-
troduce the model that we shall extend to smectics, we
shall discuss, in terms of barrier penetration, these
resultant solitary defects in nematic chain conforma-
tion. Our main result, exponential variation in chain
dimensions in strong smectic fields, is shown to arise
from layer hopping. It is obtained by mapping onto
the simplest possible band-structure problem. Small-
angle neutron and x-ray scattering is required to test
these ideas.

Polymeric nematics differ from their conventional,
rodlike counterparts in that their length, on the scale
of their persistence length, is long enough to exhibit
flexibility. The drive to explore many molecular con-
formations characterizes most polymer properties, but
is in conflict with the tendency toward orientational or-
der required by the packing and interaction of the
mesogenic moieties comprising the chain.

In backbone (BB) molecules where mesogenic units
are lineally incorporated in the main chain, this con-
cept of competition has been recognized by de
Gennes® via the introduction of hairpins and pursued,
via a model of wormlike nematics,* by Warner, Gunn,
and Baumgirtner.! The tangent vector G(s) of such a
chain evolves with arc length s on the unit sphere.
The rotational diffusion equation describing 4 (s) is of
the Schrodinger type with an equatorial potential
resulting from the nematic mean field. The confine-
ment of the tangent vector to the polar regions leads,
in the limit of strong fields,! to rodlike dimensions in
the ordering direction z. Transitions from one pole to
another are molecular hairpins [see Fig. 1(a)], the ac-
tivated equatorial barrier hopping corresponding quali-
tatively to de Gennes’s Boltzmann factor of hairpin
energy. The quantum analog is! of tunneling from one
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pole to another, solved by WKB approximation in the
strong-field limit. Exponential behavior of chain
dimensions is accordingly no surprise. Phase behavior
and transitions are found? to be qualitatively different
from simple nematics because of the interplay between
molecular ordering and the internal entropy reservoir
of molecules. Examples are large latent entropies and
drastic expansions of molecular dimensions. Comb, or
side-chain (SC), polymers have stiff, mesogenic ele-
ments attached by molecular hinges to the main chain,
itself capable of exhibiting various degrees of flexibili-
ty according to its composition. Several types of
nematic order have been found,’ one of which, N;, is
where the side-chain ordering is dominant and where,
when the hinge constrains the main chain and side
chain to be close to perpendicular, the main chain is
confined toward the plane perpendicular to the order-
ing direction. This assumes that the side-chain spacing
along the main chain is less than a persistence length
so that the hinge constraint effectively acts along the
whole main chain; see ¢ in (3). On the tangent unit
sphere the repulsive potential is now in the polar re-
gions and the tangent vector resides in the tropics [see
Fig. 1(b)]. Unlike the prolate case, this oblate case ex-

(a) ==&

FIG. 1. (a) Nematic backbone polymer with a hairpin
change in direction indicated by a dot. The corresponding
trajectory on the tangent unit sphere shows the hairpin (dot)
as the transition from one pole to another through the equa-
torial repulsive potential (shown shaded). (b) Nematic
comb polymer with side chains attached to the main chain by
hinges (small dot plus zig-zag). The main-chain tangent
sphere shows localization around the equator by the polar
potentials.

© 1986 The American Physical Society



VOLUME 56, NUMBER 12

PHYSICAL REVIEW LETTERS

24 MARCH 1986

hibits no exponential change in chain dimensions—as
the field grows the z dimension shrinks and the per-
pendicular dimension becomes that of a 2D random
walk. These comb nematics lead to the smectic-A
phases we consider here.

Pendant smectogenic moieties induce a polymeric
smectic phase. The modulation of the density in the z
direction by the side chains restricts main-chain free-
dom still further than in the particular oblate SC
nematic described above. The restriction is not only in
the directions that the chain tangent can adopt (the
nematic field), but also in the z position (the smectic
field). In the limit of strong smectic fields we predict
interesting qualitative behavior, exponential chain
dimensions arising because of chain hopping (tunnel-
ing) between layers [see Fig. 2(a)], in contrast to the
tunneling in tangent space of BB nematics. Now there
is conflict between the drive toward maximizing the
internal entropy of a chain and the smectic field con-
fining it toward exploring only two dimensions. The
resolution again yields exponential dependence of
chain dimensions in the layer-normal (z) direction,

(r2y=1lexp| —BE,}L, 1)

where E; is a barrier energy, L is the chain length, /is
an effective step, and 8= (kgT) " .

We now outline the theory leading to this new as-
pect (1) of molecular combs. In the BB partition func-
tion Zg we can identify the competing influences in
the sum over conformations:

Zg =f86(s)8r(s)exp{—BHB} I130a(s) —£ (91,
. ()
Hp =J; ds {3€u?(s) + cPy(u,(s) )+ bo cos[kyr,(s)1}.

(3)

The main chain is represented as a wormlike trajectory
r(s) with tangent vector 4(s) given by (s), the dot
denoting 9/9s. The arc length s varies between 0 and
L. The first term in the energy Hjp represents chain-
bend elasticity,* € being the modulus. We neglect tor-
sional modes of the main chain since, although impor-
tant, they do not contribute to changes in the chain
dimension. The second is the mean fields of nematic
order and bend from the hinges with P, the second
Legendre polynomial. The constant ¢ contains,’ in ad-
dition to nematic coupling constants of the Maier-
Saupe and Flory types, the order parameters of the
nematic components, main and side chains. For sim-
plicity we shall only consider here the smectic-
A -nematic (Sm4-N) transition and will also assume
that the nematic order is already high and, further,
changing little with temperature. Then c is a positive
constant for the particular nematic phase to which we
are restricted. The third term of (3) shows a smectic
mean field inducing a density wave in the z direction
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FIG. 2. (a) Additional confinement of such combs by a
smectic cosinusoidal potential V. The layer normal, z, is also
the polar direction in Fig. 1(b). Main-chain deviation from
the z direction now involves layer hopping (dot) in the
smectic potential and a random walk in the zdirection
results. (b) The comb, with side chains now shown, illus-
trates how layer hopping by the main chain necessarily in-
volves bringing side chains in conflict with the nematic field.
This is the repulsive polar potential of Fig. 1(b).

because the chain is attached more or less rigidly to
the side groups undergoing smectic ordering. The
smectic order parameter is o = (coskgyr,(s)) and the
coupling constant b is assumed to subsume the effect
of nematic-smectic cross coupling, negligible if the
nematic order is saturated and thence uncorrelated
with cos(kgr,). The smectic wave vector is ko= 2m/d,
with dj the layer periodicity imposed by the side-chain
ordering.

The number of hops in the random-walk dimension
(1) contains the exponential factor. A heuristic justifi-
cation considers £; to be the energy of a chain making
a single transition from one smectic well to the next.
When we take the nematic and smectic energies in (3)
and minimize their sum, the optimal trajectory has

r,(s) = (2dy/m)tan~ Yexp[(bokd/3c)V2s]1,  (4)
with an associated energy
E, =4Jq/B=83bac) ¥ k,. (5)

Rapid transition through smectic potentials are dic-
tated by b but involve the chain tangent moving to-
ward the poles, the main chain heading in the z direc-
tion, which brings the side chains perpendicular to the
nematic field and is penalized by c [see transitions in
Fig. 2(b)]. The geometric mean (boc)V? of (5) is
characteristic of an Euler-Lagrange minimization. The
hopping probability is then proportional to the
Boltzmann factor exp(—BE;). We show below that
this is indeed the major effect but that temperature,
bend fluctuations, and hop overlap have a more subtle
role. The simplest evidence of this is that (1) is not
proportional to d¢ as the above analysis would suggest.

The Green’s function G equivalent to (3) obeys® the
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Fokker-Planck—-type equation

(8/dL — DV3—BcPy (L) — £ 8/9z —Bbo cos(koz)} G =8(L)d(L—{o)8(z —z),

where {=u,, z=r,. The first term of (3) corresponds
to DV? in (6), where D= (2B¢)~! is the rotational
diffusion constant and is also the inverse persistence
length of the worm with no fields.! The second term
in (3) confines G to the tropics and the first three
terms in (6) together are the spheroidal wave equation
in tangent space! yielding the oblate chains of the
underlying N, phase.’ We denote the eigenvalues of
the eigenequation corresponding to the spheroidal part
of (6) by A {?, the eigenfunctions by Sp,({). The par-
tition function can be recovered from G by summing
over initial and final coordinates. G also yields confor-
mations and order parameters. We shall suppress the
partition function for side chains since the nematic or-
der is assumed saturated with the smectic phase being
at low temperatures.

Since real-space properties such as chain dimensions
and smectic order interest us, we project out the
tangent dependence of the distribution in (6). This
can be done systematically by use of Bloch perturba-
tion theory’ for infinitely degenerate states which,
when applied to Fokker-Planck equations for over-
damped systems, is equivalent to the Chapman-
Enskog procedure used to eliminate fast variables from
kinetic equations.® The method works in under-
damped systems’ and is quite general, summarized in
this context by Renz,’ and leads to asymptotic series.
We change variables kyz =2y and divide (6) through
by D. The projection then yields the equivalent
eigenequation in real space

[B, 8%/3y*— (Bbo/D)cos2y Iy, (y)
= ()\v,n_krs()))"’v(y): (7)

where B,, giving a spatial diffusion constant of
B,D(2/kg)?, is®

odd 2o
21) (0) A

for the ground state n=0. The matrix element {, is
taken with respect to Sp,, and Spy. This procedure
depends on the magnitude of (8), the ratio of the
square of two lengths: the worm persistence length
D~ ! reduced by the oblate nematic confining potential
(the fy factor), and the layer spacing, dy=2m/k,. The
result (7) corresponds to the classic scaling result of
Edwards—if the step length of a walk is short com-
pared with a relevant length scale, here d, then the
walk can be replaced with a Wiener process. Indeed,
the diffusive part of (7) can be derived heuristically by
comparison with the result’® for the z dimension of
an oblate chain in the strong N, limit, (r2)

By= 8)
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(6)

=D~'L/(2A?), where A? is the nematic coupling’
3ceB?. The oblate nematic field allows only small ex-
cursions away from the equator [Fig. 1(b)] and hence
the zstep length is shrunk by (2A4%)~! from D!
identification of diffusion constants, we have
By= (ko/2D)?* (4A?), consistent with limiting values
of {mo and A 'Y inserted into (8).

This is the first time we have seen the use of a phys-
ical and mathematical reduction of a worm chain to a
Wiener process. It proves very useful though we em-
phasize that one cannot use Wiener processes in real
space at the outset in liquid crystal problems. This is
because of four physical aspects absent in the Wiener
measure, namely, nematic coupling to the tangent vec-
tor, chain stiffness as a precondition for mesophases,
hinged side chains restricting the main chain tangent
vector, and rod dimensions susceptible of approach.!-?

If we divide (7) by Bj and now write

qg=bo/(ekdfy) 9
and the new eigenvalue a,= (), ,—\{")/By, then
(7) is cast into the conventional Mathieu form,? a pro-
totype Schrédinger equation for band electrons in a lat-
tice:

{—08%dy*+2q cos(2)}w, (») = a, v (). (10)
The q of (9) is the same as that defined by (5) in the
limit of strong nematic fields, that is, where f
=(4A?)~!. The qualitative aspects of chains in a
smectic phase now emerge and we merely sketch the
details. The required Green’s function is expressed as
products of eigenfunctions of (10), including the solu-
tions ¥, with k0 away from the band center, by ex-
ponentials of eigenvalues times chain lengths. For
long chains we have ground-state dominance,! the
lowest values of A appear in G, and we take the
n=0,v=0 ground state of the spheroidal or Mathieu
equations with only the parabolic region about the
band minimum, k=0. All that is important, in all
strengths of smectic order, is the curvature, that is, the
effective mass.

Strong ordering, g large, corresponds to tight bind-
ing whereupon s is constructed in the usual way with
Yoo arising from semiclassical estimates of the wave
functions in each well, or from parabolic cylinder func-
tions of periodic argument.!® The dispersion relation
for the eigenvalues, ag, =Aa sin?(km/2), is character-
ized by the exponentially small bandwidth Aa describ-
ing barrier hopping by the chain. The resultant chain
dimension and order parameter derive from G with ¢
and a inserted. The scaled bandwidth BjAa deter-



VOLUME 56, NUMBER 12

PHYSICAL REVIEW LETTERS

24 MARCH 1986

mines (r2) = foD~'L7*Aa/2. We obtain
Aa=2(2/m) Vg% exp(—4/q ) €8))

whereupon (1) results, with the activation energy e;
(5) in the strong oblate limit for f;. The nonperturba-
tive result (11) is consistent with (5) and (1). The ef-
fective step /is the oblate nematic step D ~!/2A? scaled
by ¢**, a nonintuitive result.

Asymptotically the order parameter o is

o= (coskoz) =1-1/2¢"2+ . .. (12)

a cubic self-consistency equation for o. The tempera-
ture at which solutions first (discontinuously) appear
is an upper bound on first-order transitions N; to Sm,.
Unfortunately this occurs for ¢ ~ 0.6 where it is un-
wise to use (12). The assertion of first order and the
bound are hence unreliable. Low-order perturbation
theory asserts a second-order transition. Further com-
ments on the transition await a numerical analysis.
Since this work was completed an experimental in-
vestigation has appeared!! demonstrating that chain
dimensions perpendicular to smectic layers are very
strongly reduced. It would be interesting to know if in
this strong smectic limit any activated behavior is seen.
In summary, we have established a striking result
for chain conformations in strong smectics as a result
of conflicts between smectogenic and polymer proper-
ties. Relation (1) for chain size can be tested by
small-angle x-ray or neutron scattering from labeled
chains in melts and would test our hopping idea. Our
method projects the chain problem into real space and
a bandlike problem results. Away from the hopping
regime numerical analysis or nearly-free-electron
analysis would be relevant, the former to describe the

transition, the latter for the important case of comb
polymers in smectic solvents.
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