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Experimental Observation of Bounce-Resonance Landau Damping
in an Axisymmetric Mirror Plasma
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Suppression of the drift-cyclotron loss-cone instability (DCLC) in an axisymmetric mirror plasma
has been observed for frequencies in the vicinity of the bounce frequency of electrostatically
trapped thermal electrons. The location and width of the frequency region of suppression is in good
agreement with calculations of bounce-resonance Landau damping.

PACS numbers: 52.35.—g, 52.55.Jd

It is well known that periodicities in particle orbits
must be considered to describe accurately the response
of plasma to fields fluctuating in time and space.!'?
Energy can be transferred between trapped particles
and a modulated electric® or magnetic* field if the
modulation frequency o is near a multiple of the
bounce frequency, w,, of any of the particles. The en-
ergy exchange has a resonant character, with maxima
when w = nw,, where n is an integer. The case of an
oscillating electric field interacting with charged parti-
cles is referred to as bounce-resonance Landau damp-
ing (or growth)> ' (BRLD) because the operating
mechanism is the collisionless Landau interaction.'!

While bounce-resonance damping has been dis-
cussed theoretically and invoked to explain plasma
phenomena,>% !0 it has not been directly observed in
the laboratory. In studying the drift-cyclotron loss-
cone instability (DCLC) in an axisymmetric mirror
machine, MIX 1, we have made the first laboratory
observations of BRLD and we show that these are in
good agreement with theoretical predictions.

DCLC is a microinstability of a magnetized col-
lisionless mirror-confined plasma, which is driven by
the radial density gradient and the loss-cone feature of
the confined ions.!> '3 The unstable waves are charac-
terized by a frequency which is at the ion cyclotron
frequency /., =eB/M,27 and its harmonics, a perpen-
dicular wavelength A, which is comparable to the ion
gyroradius, a long parallel wavelength A;, >> \,, and a
fluctuation amplitude which is very sensitive to the ex-
istence of a loss cone in the ion velocity distribution.
The damping described here is attributed to the reso-
nance of electrons bouncing between the ends of the
mirror cell with £, (1), the component of the DCLC
wave electric field parallel to the magnetic field lines.

Our BRLD observations were possible because in
MIX 1, DCLC is unstable for a substantial range of
midplane magnetic fields and for three gas species, hy-
drogen, deuterium, and helium. In addition, DCLC is
often unstable at many harmonics of the midplane ion
cyclotron frequency. This has resulted in instability
observations over the wide frequency range f = 0.6-4
MHz. Now, the electrons in MIX 1 are electrostatical-
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ly confined by the mirror ambipolar potential ¢
(e ~ SkgT,, where T, is the electron temperature)
and the bounce frequency of a thermal velocity elec-
tron lies in that the same frequency range. What is ob-
served is that in the vicinity of the fundamental
bounce resonance, the DCLC mode is suppressed or
stabilized.

This can be evidenced in a single shot, where a par-
ticular harmonic or harmonics are suppressed or stabi-
lized, and is clearly shown in any extensive set of mea-
surements of mode amplitude versus frequency, as are
presented below. These data show the existence of a
‘““‘damping or suppression window’’ and our identifica-
tion of BRLD is based upon a comparison of the loca-
tion and width of this suppression window with
theoretical predictions of BRLD.

Turning to the theory, we obtain the relative BRLD
rate from the linearized Vlasov-Poisson equations by
integrating over the unperturbed periodic bounce or-
bits as described by McCune.'* The dispersion rela-
tion is treated in the limit y/wgz << 1, where w = wg
+ iy is the complex instability frequency, and a Taylor
expansion about w = wg is used. In this case,

- B Imle,(k wg)]
Y_QEY“——E{BRe[e(k,w)]/aw} '

a w—mR

where € is the plasma dielectric function and « denotes
particle species, so that y,o« —Im(e,). This result is
used to distinguish y, (wgz ) from y;(wg ) in the exper-
imentally relevant case where y; and 9 Re(e)/dw
change negligibly over the range in wyp for which vy,
changes dramatically. The perturbed potential is ex-
pressed as an expansion in a set of convenient basis
functions,

b1 (x,1)= Epdbp exp(ikpz +ik, x, —iwt),

where ¢, is the amplitude of the wave component with
wave vector k=k,z2+k X, k,=pw/L, p is an in-
teger, and L is the length of the mirror cell.

A Fourier transformation of Poisson’s equation in z
casts the dispersion relation in the form of a matrix
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eigenvalue equation for the coefficients ¢p. The solu-
tion of €-¢,=0 is obtained by setting det(e)=0,
where the matrix elements of e are e?=35,— e
— €. To evaluate the electron damping alone, the
eigenmodes of ¢; are approximated as those for a
homogeneous plasma in a square potential well, which
are the same as the original basis functions. Thus,
roots of the determinant are obtained from the set of
uncoupled homogeneous equations €??=0. From this

4776’2 o afe()(E) . '
qa —
€ meszo dE— ES,,(E,k‘,)Sm(E,kq)m
where
1 %2 ‘ o
Sn(E,kq)—Z _’b/zdt expl—inwy (E)t +ikyz 1,

result, —Im(ef?), which is proportional to y,, is ob-
tained.

The one-dimensional electron dielectric function is
Fourier transformed by representing the periodic posi-
tion z' as a series in the orbit phase w;(t'—1) + Yy,
where sy corresponds to the particle’s phase in its own
orbit at time ¢, and rewriting the time integral with
r=t'—t A transformation from (z v) space to
(E, ¢5p) is made and the transform is then calculated,
leading to

” —iln—m)y, 0 ilnwy—w)t
L dpg/mre™ T are T, )

2

ty = 2m/w,, and the particles are assumed to be distributed uniformly in initial orbit phase .
The resonant denominator (nw, —w) that arises from the integral over = in Eq. (1) is rewritten as
n(E—E,,)[8w, (E)/GE]EW, where w;, (E) has been expanded in a Taylor series about E,,,, the energy defined

by w,(E,/,) =w/n. Integrating over sy and E in Eq. (1) yields the electron bounce-resonance damping rate of the

g th eigenmode,

4772e2 a afeo(E)

yde —Im(ed9) =
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From this point Eq. (3) can be applied to various potential shapes. We consider electrons which are electostati-
cally trapped in a positive ambipolar potential ¢ which is modeled'* as

¢/m=0,

lz] <z,

d/m=swiy(lz]—20)2(1+z|/Ly)?,

p=<|z|=<L/2, (4)

where m is electron mass, z is electron position from midplane, zy and L, are shape parameters, and w, is a con-
stant. The major role of the confining-potential model is to provide a functional for w, (E). For ¢ of Eq. (4) the

approximate result is

wb(x)=wb0(l +a/X)/(1 +b/X),

&)

where x = |v|(2kgT,/m,) "2, a =2L (kgT,)V*/(wLodl}?), b=4z0¢}1%/ (wLkgT,’?), and ¢, is the maximum
value of ¢. Equation (5) is valid for a and b less than 0.3; ¢ is parabolic for a =0, b =0, and approximates a

square well fora =0.3, 5 =0.3.

S,S, in Eq. (3) is relatively insensitive to the shape of the confining potential and is approximated in the ap-

propriate limit of the square well, for which wj (E) = (/L) (2E/m )2

L}

a—p _ _
S, (E k,)S,; (Ek,) = ! [sinc (n—p)m sinc (n—gq)m +sinc (ntp)m sinc (ntp)m

4 2

2 2

C(n +q)m (n+p)m S.mc(n—q)qr

+ (- 1)"[sinc (n=p)m

2

where sinc(9) =sin6/6.

We next use a Maxwellian distribution function in
Eq. (3), with the measured 7,, and n =p =q =1, con-
sistent with the experimental observations. The mag-
nitude of ¢(z=0) is measured (see below) and the
only unmeasured quantities are the shape parameters a
and b which are obtained by a fit to the experimental
data. Figure 1 shows the potential well shapes for the
values a =0.15 and b =0.12.

Returning to the experiment, the MIX 1 mirror

sin

+ sinc

2

]. (6)

machine!® was operated for two cases of mirror cell
length, (a) L =92.5 cm and (b) L =60 cm, as illus-
trated in Fig. 2. The plasma is described by a central
density of (1012 cm~3)expl — #/(40 usec)], a Gauss-
ian radius of 4 cm, temperatures of 100 eV for ions
and — 10 eV for electrons, and a midplane potential of
SkgT,. The electron temperature was measured by
Langmuir probes, the ion temperature by perpendicu-
lar and parallel ion energy analyzers, and the ambipolar
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FIG. 1. Theoretical models of the electron-confining

potential-well profile ¢(z); ¢y is simply the maximum
value. Dashed line is the square well, dotted line is the para-
bolic well, and the solid line is an intermediate well with
a=0.15and b=0.12.

potential by the ion energy analyzers and an emissive
probe. For this value of ¢/kgT,, electrostatic trapping
is the primary confining mechanism.

The unstable DCLC waves had narrow spectral
features at f=1.1/f,;, /=1,2,3,..., and they prop-
agated in the ion diamagnetic direction with A, = 2.5
cm and a radial structure peaked at a radius of 3-4 cm.
The axial structure was carefully measured'® to be an
axial standing wave with A, = 2L; this deviation from
flutelike mode structure is necessary for BRLD, since
it indicates a nonzero E (1). It also justifies the use of
p =¢q =1 in the theoretical model.

The evidence for the existence of BRLD was ob-
tained by measurement of the mode power spectrum
as the frequency of the mode was varied by varying
the magnetic field. The amplitude of the relative rms
density fluctuation (/7/n) in a small spectral band-
width at fpcc was measured for a range of magnetic
fields, for the two mirror cell lengths. These data were
recorded at a radius of 3 cm (near maximum) and for
each shot the amplitude was averaged over 10 usec.

In Fig. 3(a) we show mode amplitude versus w/wgr
for a deuterium plasma with a mirror length of
L =92.5 cm, where wgr =7 (2kgT,/m,)?/L; wgr is
the bounce frequency of a thermal electron in a square
well of length L and is a convenient normalization.
Each datum point is the average of at least five shots
and we see quite clearly a strong suppression of the
mode centered near where w =wgr. In Fig. 3(b) we
show data for deuterium and helium for the mirror
length L =60 cm and we see again a very clear
suppression region in fequency. In Fig. 3(c) we show
the behavior of the electron bounce-resonance contri-
bution to the damping rate as determined by Egs.
(3)-(6) and the experimental parameters, where a and
b have been varied to obtain a best fit. The shape of
the corresponding potential profile is shown in Fig. 1.
Figure 3 shows very good correlation between the cal-
culated damping rate and the mode-suppression win-
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FIG. 2. Axial profile of magnetic field on axis in MIX 1,
showing the two different length mirror cells.

dows with respect to both the location and width of the
windows. The fact that good agreement was obtained
for two different mirror lengths, but the same confin-
ing potential shape, gives us great confidence in the
results.

As an additional point we note that the data shown
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FIG. 3. (a) Variation of measured DCLC mode amplitude
with normalized mode frequency, w/wgr, for deuterium in
the 92.5-cm-long mirror cell, with 7, =8.6 eV. Solid line is
to guide the eye. (b) Same as (a) for deuterium (circles)
and helium (triangles) in the 60-cm-long mirror cell, with
T,=5.5 eV for deuterium and 3.3 eV for helium. (c) Rela-
tive linear damping rate from Eq. (3) for the experimental
parameters and @ =0.15 and 5 =0.12.
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here pertain to instability at the fundamental ion cyclo-
tron frequency. In some cases DCLC in MIX 1 is un-
stable at many harmonics of f; and for these cases any
harmonic with @ = wgr is strongly suppressed.

Turning to alternative explanations, we note that
measurements of the plasma properties, in particular
ion energies and ambipolar potential, do not show any
change as B is varied which could account for the ob-
served suppression. In addition, we have calculated
the DCLC growth rate versus B from a slab-model
code excluding BRLD, and no damping window ap-
pears in this theory. Moreover, data taken with hydro-
gen for the short mirror show no dependence of mode
amplitude on magnetic field for 2.5 < (w/wgr) < 3.8.
Finally, we have calculated the dominant nonlinear
saturation mechanism, which is wave-induced quasi-
linear diffusion, and have verified experimentally that
this is the most important nonlinear process; these
results do not indicate any suppression window as
described here.

In conclusion, for the first time, the phenomenon
known as bounce-resonance damping has been experi-
mentally verified. This damping severely reduces the
amplitude of the DCLC mode for frequencies compar-
able to the axial bounce frequency of thermal elec-
trons. Calculated damping rates accurately predict the
location and width of the so-called suppression window
in frequency for two mirror lengths and two ion
species.
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