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The transfer of energy from the driving beam to the trailing beam in the plasma wake-field ac-
celerator is studied in computer simulations. We show that with an asymmetric current distribution
in the driving bunch, trailing particles can gain energies up to (1+,Z?)"2Aymc?, where Z is the
bunch length and Ay mc? the average energy loss of driving electrons. Because of the relative phase
slippage and the two-stream instability, the process of energy gain degrades before the driving beam
loses all of its energy; however, even for y, =150, Ay/y; > 70%, with an energy gain — 1 GeV.
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Transverse effects are briefly discussed.

PACS numbers: 52.75.Di, 52.65.+z

The idea of using one bunch of relativistic electrons
to accelerate another to higher energy through the
wake plasma wave set up by the leading bunch was
first suggested by Chen, Huff, and Dawson! in a paper
employing the electrostatic approximation; later? the
treatment was generalized to a fully electromagnetic
one. Although the exact values depend on many
parameters, accelerating fields of 1 GeV/m seemed
reasonable. On the other hand, Ruth et al.® recognized
the analogy between this scheme and collinear wake-
field acceleration in conventional metallic accelerating
structures (MWFA), and called the former the plasma
wake-field accelerator (PWFA). Once this is seen, ex-
isting studies of MWFA can be directly connected to
the PWFA.

One of the outstanding questions concerning wake-
field acceleration has been the limitation on the energy
that can be transferred from the driving beam to the
trailing beam. A useful parameter which describes this
energy transfer is the transformer ratio R, defined as
the ratio of the maximum accelerating electric field
behind the driving bunch, E,, to the maximum re-
tarding electric field within the bunch, E, . If a
monoenergetic driving bunch excites a wake field, and
if within distance L the particle in the bunch that ex-
periences the maximum retarding field £, , which
would stop the earliest, loses energy AymczzeLE,,,‘,
then the maximum possible energy gain for a test
charge behind the bunch will be R Aymc? in the same
distance.

It can be proven that,* for any finite-length bunch
with a symmetric longitudinal charge distribution
traversing an electromagnetic cavity supporting only a
single mode, the transformer ratio cannot be larger
than 2; this is a generalized version of the fundamental
theorem of beam loading.” Since the plasma in the

PWFA is assumed to be cold, one expects that only a
single mode, i.e., the oscillation at the plasma frequen-
cy w,, will be excited by the driving beam. Thus the
theorem should hole in the PWFA as well. Indeed,
this limitation has been observed in computer simula-
tions.® It was found that, for a driving beam with
charge-density profile p ~ 1 +sin(kz —wt), the driven
beam gains energy only up to AU < 2y,mc?. But is
this really the upper limit of energy gain with use of
the collinear wake-field acceleration scheme?

Recently, Bane, Chen, and Wilson’ have shown that
this limitation can be overcome in the MWFA by the
introduction of asymmetric current distributions in the
driving bunch. Again, it is expected that these ideas
also apply to the PWFA. In this Letter we report on
the results of our computer simulations and some
theoretical studies of the PWFA. A one-and-two-
halves—-dimensional (v,,v,,v,,z) relativistic, elec-
tromagnetic particle code® is used to simulate the
beam-plasma system. QOur results show that the
transformer ratios in various cases agree very well with
theoretical predictions. However, there are aspects
that limit the ultimate energy gain of trailing particles.
These will also be discussed.

Consider a one-dimensional plasma in which the
driving beam is an infinitely thin disk with uniform
surface charge density eo and moves with speed
vy < ¢ in the positive z direction. Let us define the
variable (=wv,t—z, which measures the distance
behind the driving beam. It can be shown® that the
electric field £(¢) in the system is 4mwe o cos(k,{) for
(>0, 2wec at (=0, and 0 for (<0, where
k, =w,/v,. Notice that the transformer ratio is 2 in
this case, i.e., E(0") =2E(0).

We now consider a bunch of finite thickness with
charge density p({) extending from (=0 to (=Z.
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The electric field due to this bunch is then a convolu-
tion integral

E@) = am [ p(¢)coslk, (t~ ) 1d. (1)

For a linear ramp (a ‘‘triangular’” bunch) with charge
distribution p({) =pok,{ for 0=<k,{<2mN, and 0
otherwise, it can be shown’ via Eq. (1) that inside the
bunch, E~({) =4mpok,” '[1—cos(k,¢)], and behind
the bunch, E*({) = —8m*Npok, 'sin(k,{). Identi-
fying the extrema of £ ¥, we see that R = wN, which
is larger than 2 for any N = 1. This calculation has
been checked by computer simulations.®” It is found
for k,Z =2m that R =3.14, in very good agreement
with the theoretical prediction of R = 7.

Consider next the ‘‘doorstep’ charge distribution
where p({)=po=const for 0=<k,{<m/2, and
p({) = (2/m)pok,¢ for m/2<k,{<k,Z. In this case
E () —sin(k,{) for the first quarter wavelength and
stays constant for the remaining bunch length. The
transformer ratio for this case was calculated’ to
be R=I[1+(1—=n/2+k,Z)*V2%. For k,Z=2x=N, R
= 2w N, which is about twice that of a triangular
bunch with the same length. A computer simulation
[see Fig. 1(a)] was performed. The beam-plasma sys-
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FIG. 1. Plots of the longitudinal £ at w,r=24. (a) A
‘“‘doorstep’” charge distribution with bunch length
Z =1.25),. Note that R =6.12. (b) An optimal distribu-
tion with the same length; R =17.1.

tem was set up in such a way that the system was
charge neutral both globally and locally at r =0. The
beam was taken from a fraction of the plasma elec-
trons at the far left of the system; the beam particles
were started with the appropriate velocity (y =7.09 in
this case). The depletion of the electrons due to the
beam motion makes the E™* oscillations near the left-
hand boundary artifically large, but since their group
velocity is very small they have no effect on the subse-
quent beam motion or wave generation. The figure
shows that the £~ ({) across the triangular component
of the bunch is not entirely flat as expected. This may
be due to the particular way that the system was initial-
ized. Nevertheless, for k,Z=2.5m we observe
R =6.12 at w,t =24, which is reasonably close to the
predicted value of R =7.35. In this case the improve-
ment in R is due to the fact that all particles in the tri-
angular component of the bunch experience the same
E,  and therefore contribute equally. This observa-
tion leads to the following p}ovable assertion’: The
maximum possible transformer ratio for a bunch with
given length and total charge corresponds to that charge
distribution which causes all particles in the bunch to see
the same retarding field.

From the electric field due to a thin disk we see that
it is not possible to have a constant retarding field
starting exactly at the head of the bunch for regular
charge distributions. Therefore let us parametrize the
optimal retarding field as’

E-(D=0—-e"*)E, 0<s[(<7Z 2)

which approaches the constant £5 when a — o.

By the use of the Laplace transform Eq. (1) can be
inverted® to give the charge distribution that produces
a given E~({) and E*({). Application of this
method to Eq. (2) gives
Ey

p()=— 2

[(?+kDe *+ k2 (al— D], 3)
e
for 0= ¢ = Z. This charge distribution is a superposi-
tion of two components: one a decaying exponential,
and the other a linearly rising ramp. In the asymptotic
limit (a — oo ) the decaying exponential becomes a &
function and the ramp starts from {=0". In this limit
we get the maximum possible transformer ratio
R, = lim R («) =[1+(k,Z)*]"2. (4)

Since all particles except for those in the §-function
component experience the same retarding field and
slow down at the same rate, the efficiency of energy
extraction is (1+k72Z%?)/(2+k;Z*), which ap-
proaches 100% when k,Z >> 1. It is thus comforting
to see that the optimal charge distribution provides not
only the maximum transformer ratio but also the best
efficiency.

Note that to achieve the constant retarding field the
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ratio of the charges in the two components of the
charge distribution is not arbitrary, and must be equal
to 2/(k,,Z)2. Computer simulations were performed
for this arrangement. The resulting retarding field is
very close to a constant [see Fig. 1(b)], and the
transformer ratio is indeed better than the correspond-
ing doorstep bunch. For k,Z=257, R= 7.1 at
w,t =24, where the predicted value is 7.92. Again the
initial condition probably contributes to the difference.

A physical picture is helpful in understanding how
these asymmetric bunches can give large transformer
ratios. The ideal driving bunch has two components.
The leading component, such as the )\,,/4 rectangular
pulse in a doorstep bunch or the §-function pulse in an
optimal distribution, serves as a precursor. The pre-
cursor gives background electrons an impulse so that
they flow out of the local region at a rate that builds up
in time. It is designed such that when the end of the
precursor enters the region, the depletion rate of plas-
ma electrons is just balanced by the replacement rate
of electrons in the driving bunch. By this time the sys-
tem becomes locally neutral and Gauss’s law implies
that £~ (Z) reaches a zero slope. The long ramp com-
ponent then follows, during which charge neutrality is
sustained. At the time the driving bunch leaves the
region, the plasma suddenly becomes nonneutral. The
displaced electrons are then strongly attracted back to
the ions and large-amplitude plasma oscillations begin.

Although the transformer ratio increases linearly as
the bunch length increases, there are practical limita-
tions. In the PWFA a natural limitation is the wave-
breaking limit of the plasma oscillations. The charge-
neutrality assumption implies that the beam density at
the tail of the bunch should be the same as n,,. Thus
the peak charge density of the bunch is limited to np,.
Given the total charge of a bunch there is then a trade-
off between having a longer bunch but a smaller rate
of increase in the charge density and a shorter bunch
but a charge density which increases more rapidly.
The former has a larger transformer ratio but smaller
acceleration gradient, whereas for the latter it is the
opposite.

To study the energy gain of the trailing particles, we
put a test charge into a plasma driven by the optimal
distribution presented above in a computer simulation.
The length of the driving bunch was chosen to be 4.25
X\, and the ratio of the peak driving beam density #,
to n,o was 0.23. The transformer ratio is expected to
be ~26.7 from Eq. (4). In the first trial we put the
test charge at the first peak of the £% ({) oscillations.
The y of the test charge increases from y,, = 8.0 to its
first peak value of 34.8 at w,r =157 [see Fig. 2(a)], at
which time the mean energy of the driving beam drops
from ,;,=7.6 to y,,=15.5 [see Fig. 2(b)] with stand-
ard deviation = 0.61. Ideally, we may expect the test
charge to reach y =1y, +R (¥, —y,) = 64. As we
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FIG. 2. (a) Energy of the test charge as a function of
time. The charge is initially on a crest of the wake field. At
w,t =157 where 8=7/2 (see the arrow), it slips into the
deceleration phase. (b) Mean energy of the driving bunch
with Z =4.25),. The two-stream instability becomes sizable
at w,t =200 (see the arrow).

shall explain below, by the time w,r =157 the test
charge has slipped by #/2 in phase in the wake field.
As a result, during this time the test charge sees not a
constant field E,’, but rather E,’ cos(w,t). Thus we
expect there to be a smaller energy gain
(2/7)R (¥1;—v1,). With this correction y,, = 40.7,
which is not too far from the observed value of 34.8.

After w,t =157, 7, starts to fluctuate in this exam-
ple. Although it eventually climbs to higher values,
the process is rather random. Thus we consider the
energy gain to be degraded by w,r = 157. Diagnostics
indicate that there are two effects that caused the de-
gradation in energy gain: the two-stream instability in
the driving bunch and the relative phase slippage
between the driving and trailing beams. One of the
results due to the two-stream instability is that the os-
cillations in the driving bunch generate sidebands in k
around c/w,,, causing a modulation in the wake-field
amplitude. Secondly, when the instability becomes
sizable some beam particles start to gain energy while
others lose energy more rapidly. The driving beam
thus acquires a large energy spread. At this point the
wake field becomes turbulent, and the driving
mechanism is largely degraded.

The relative phase shift between two relativistic par-
ticles is given in general by?

1 1

Y1iY1s Y272

ol
A

&=

, (5

p

where L is the distance of travel, and / and f stand for
initial and final values for both particles, respectively.
The degradation in energy gain with a given & is
minimized by phasing the test charge initially at a
phase — 8/2 behind the crest and letting it slip over the
crest to a phase +8/2. The energy gain is then
eE,t L (sind/2)/(8/2).
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In the specific case discussed above, the two-stream
instability becomes sizable when w,r =200 [see Fig.
2(b)]. On the other hand, we observe that the parti-
cles near the tail of the driving bunch have energies
around one standard deviation below the mean 7y, at
w,t =157. To look for the relative phase slippage
between the tail particles of the driving beam and the
test charge, we put y,;=7.6, y,,=8.0 and y,,=4.9,
y2y =34 into Eq. (5) at w,r==157 and find that

= 7/2. Thus the degradation in our case is at first
caused by the relative phase slippage. But the decrease
of y, after w,# =157 is sustained only until the two-
stream instability becomes sizable, after which vy, be-
gins to fluctuate. To confirm this, two other simula-
tions were performed with test charge placed at angles
15° and 45° behind the first maximum of £*. This ar-
rangement allows for larger phase slippage and thus a
longer driving time. Indeed, for ¢ = —15°, y, reaches
~39.0 at w,t =167, and for ¢= —45°, we find
y2=44.5 at w,t = 180.

Redoing the simulation with y; =y, =150 shows
that the test charge (initially at ¢=0°) reaches
y2r =1840 (<1 GeV) before it slips into the de-
celeration phase at w,t = 6000. At this time 7y, has
dropped to ~— 45, and Ay ,/y,; = 70%. We see there-
fore that the energy extraction efficiency improves as
the initial energy increases.

Again in this case the two-stream instability only be-
comes sizable after the relative phase has slipped by
8=m/2, at w,t =7000. Notice, however, that with a
reasonable energy extraction rate the phase slippage
scales as ;2 whereas the growth rate of the two-
stream instability (with fixed n/n,,) scales as yi;'.
Thus above a certain energy, the degradation of the
energy gain will be influenced by the two-stream insta-
bility first. One possible method to control the two-
stream instability is to introduce a spread in particle
energy within the driving bunch. Preliminary results
indicate that this technique can lead to an increase in
beam stability.

Our results from one-and-two-halves—dimensional
simulations agree very well with theoretical predictions
so far. Energy transfer is found to be as high as 70%
for the optimal current distributions. One may wonder
whether the finite transverse size of a driving beam
alters the physical picture presented here. As far as
the transformer ratio is concerned, studies in two-
dimensional simulation show no fundamental
changes.!?

There are, however, transverse instabilities, e.g., the
oblique two-stream instability and the Weibel instabili-

ty, that would potentially disrupt the beam. Since the
transverse mass of the beam particles is a factor of y?
smaller than its longitudinal mass, the growth rates of
these instabilities typically scale as y~ 3 Further-
more, the strong transverse wake field accompanying
the large longitudinal wake field would cause large be-
tatron oscillations in the beam, which could be the
most severe disruption compared to the transverse in-
stabilities mentioned above.

Two-dimensional simulations are now actively pur-
sued. Preliminary results show that by application of
an axial magnetic field (e.g., w,=eB/mc <w,), all
the transverse displacements in the beam are largely
suppressed. Details of these results will be reported in
another paper.
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