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Equation of State of Nuclear Matter in the Relativistic Dirac-Brueckner Approach
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Within the framework of the relativistic Dirac-Brueckner approach, the equation of state of nu-
clear matter is studied on the basis of a one-boson-exchange interaction. The saturation properties
of the ground state and its compressional energy are calculated. The model is extended to nonzero
temperature by use of finite-temperature Green's functions for the dressed nucleons. Isotherms in
a I'-p diagram are obtained which show the existence of a liquid-vapor phase equilibrium belo~ a
critical temperature of T, = 12 MeV.

PACS numbers: 21.65.+ f

The equation of state of nuclear matter describes the
behavior of a system of nucleons at different tempera-
tures and densities. Besides the mean field calcula-
tions of Walecka, ' the first microscopic calculations
were based on a Hartree-Fock approximation with use
of an effective nucleon-nucleon (NN) interaction, par-
ticularly a Skyrme interaction. The major disadvan-
tage, however, of the Skyrme-type interactions is that
they are not well established away from the saturation
point and even there they give far too high a value for
the compression modulus. Microscopic calculations of
the full equation of state based on a realistic free NN
interaction have so far only been performed within a
variational description. 3 Both types of calculations
show a liquid and a gas phase of nuclear matter with a
critical temperature of about 17 MeV at half of normal
nuclear density.

%'hile the equation of state of nuclear matter for
TWO is relatively unexplored, many microscopic calcu-
lations, however, are performed on the ground state of
nuclear matter. Besides other methods, its saturation
properties have been extensively studied via the
Brueckner-Bethe-Goldstone approach. Nonrelativistic
calculations of this type, based on realistic NN interac-
tions, were, however, not very successful in describing
the saturation energy and density of nuclear matter,
unless three-body forces were explicitly included. 4

Extensions to finite temperatures are rare and up to
now rather limited. 5 7 Recently several relativistic
Brueckner calculations on saturation properties have
been performed. s ' New in these calculations is that
the nucleon in the nuclear medium is described by an
effective Dirac spinor wave function, which yields in
fact a different saturation mechanism. In this Letter
we shall present a relativistic Dirac-Brueckner (DB)

I

calculation on the full equation of state of nuclear
matter based on a one-boson-exchange (OBE) interac-
tion. It is along the same line as the calculation of Ref.
10, where only the ground-state saturation properties
are studied. We will extend our model to finite tem-
perature and show some properties of the equation of
state.

The NN interaction within a nuclear medium is
given by the effective t matrix I, which in relativistic
field theory is a solution of the medium-dependent
Bethe-Salpeter equation

I =K+i
g

KGGI'.f (1)

Here K is the full two-body kernel and G is the in-

teracting nucleon propagator that obeys the Dyson
equation

G (k) = G (k) + G'(k) X (k) G (k),

where Go is the noninteracting propagator and X(k)
the nucleon self-energy. This self-energy is the result
of the effective interaction of a nucleon with all the
other nucleons of the medium, which in the Brueckner
approach can be expressed as

X(k) = —i J [tr(GI ) —GI ]. (3)

This set of equations is practically unsolvable. Several
reductions have to be made to get a scheme that is nu-
merically feasible. In our actual calculation we follow
the method given by Horowitz and Serot. The
Bethe-Salpeter equation is commonly reduced to a
three-dimensional covariant quasipotential equation.
We will use the Thompson approximation, " which
differs only in detail from the more familiar
Blankenbecler-Sugar approximation. The equation for
1 can be written as

3 I v

&p"s'i~I'~ps»=&p"s'i~U~ps )+XJt, &p"sli~U~p'sl ) „. . . ; ' „&p's' ~1 ~ps ). (4)
(2n )' E",' (—'s'l' E", +te)—

where U gives the quasipotential and Q is the relativistic (angle-averaged) Pauli exclusion operator which depends
not only on the relative momentum in the two-particle center-of-momentum frame p', but also on the total
momentum P and total invariant mass s of the two particles in the nuclear-matter rest frame. The spin values of
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k& = k&+ 5&pXp, Ek = (k + m')'

where the effective mass m' is determined from

m'= m + Xs(k) —m'Xt (k)

(6)

at k =kF, the Fermi momentum. In fact, Eq. (4) is
written down with use of this approximation. The
quasipotential now contains effective Dirac spinors

E'+ m'
2m

Usually Eq. (4) is solved in a partial-wave —helicity
frame. Instead we calculate I in full momentum-spin
space, reducing Eq. (4) to a two-dimensional integral
equation by the use of rotational symmetry. In order
for us to calculate X(k) [Eq. (3)], the effective t ma-
trix I has to be transformed from the NN c.m. frame
to the nuclear-matter rest frame. To achieve this, I
can be projected on five covariant interaction matrices,
the scalar, vector, tensor, axial-vector, and pseudovec-
tor interactions. We choose here a pseudovector in-
stead of a pseudoscalar interaction in contrast to Ref.
9, but in accordance with our choice for the one-pion
exchange, as has been discussed in Tjon and Wallace
and Horowitz. ' After self-consistent solutions for I
and X(k) are obtained, the energy density of the
medium is given by

(u (k')
i [y k+ m + —,

' X(k) ] iu (k')). (8)
k~kF

particles 1 and 2 are given by s&2. The asterisks in
this equation display the influence of the nucleon
self-energy. This can be shown by writing the full
Green's function G(k) = [k —m —X(k)} ' as G(k)
= [k —m ) ', which is based on the general expres-
sion of X(k),

X(k) = Xs(k) yoXo(k) y kX v(k).

Dirac-Hartree-Fock calculations show that the k de-
pendence of X is very weak and that the vector part X t

is much smaller than the other two. Therefore we can
write
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Equation (4) is solved numerically by use of the
Pade-approximant method. As input for the quasipo-
tential U a one-boson-exchange interaction is used.
Nucleonic excitations like the A(3, 3) are left out
here, although they might cause important effects. In
the near future we will present calculations including 4
degrees of freedom. As mentioned before we apply
pseudovector m exchange besides e-, co-, q-, p-, and
5-meson exchange. To account for the finite size of
the nucleon a monopole vertex form factor
A2/(A2+q ) is included. The parameters given in
Table I are chosen such that free NN phase shifts, dif-
ferential cross sections, and polarization data up to
Ei b 250 MeV are nicely reproduced, as is the deu-
teron binding energy. These results will be presented
elsewhere. Our code has been checked by recalculat-
ing the Blankenbecler-Sugar results of Zuilhof and
Tjon'3 for all phase shifts, and the Brueckner calcula-
tions of Ref. 9.

In Fig. 1 the binding energy of nuclear matter is
displayed as a function of the density. The full curve
represents the self-consistent solution of Eqs. (4), (5),
and (8), in which all medium effects are taken into ac-
count in the intermediate nucleon states as well as in
their external lines. To show the influence of the use

TABLE I. Parameters of the OBE interaction. ' -20—

Meson
Mass

(MeV) f.lg. .

I

0.2
I

0.5
I

0.4

3ge

139
784
764
571
550
962

1,0
0, 1

1,1

0,'0

0,0
1',0

14.16
11.7
0.43
7.8
2.0
1.43

0.0
5.1

p (GeV/c)

FIG. 1. Energy per nucleon in nuclear matter vs the Fer-
mi momentum kF. Comparison of the Dirac-Brueckner
result (DB, full line) with the variational calculation of Ref.
4 (FP, dashed line) and a conventional Brueckner calcula-
tion (B, dash-dotted line) as described in the text.
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of effective Dirac spinors this result is compared with
a "pseudoconventional" Brueckner calculation. For
this we put in Eq. (4) m" = m and modify the two-body
Green's function to ( —,Js —E,+ Xz —Xt/)

' which is

comparable to the "standard choice" in conventional
Brueckner theory. In this way a self-consistency con-
dition still remains which is essential for a fair compar-
ison. The main conclusion that can be drawn from
Fig. 1 is that the DB model gives a lower saturation
density, very near the "empirical" value. In Fig. 1 we
also compare our DB results with the variational calcu-
lation of Friedman and Pandharipande (FP) and find a
remarkable equivalence. One should notice here that
these authors phenomenologically include a density-
dependent term in the interaction, which they call a
three-body force. Within the DB approach the interac-
tion is also density dependent but in an intrinsic way

by means of the effective spinors. At higher densities
the difference between the DB and FP results grows,
as is shown in Fig. 2, where the compressional energy
is displayed for densities up to 4 times saturation den-
sity. Both curves have a compression modulus of
K = 250 MeV at the saturation point. At higher densi-
ties the DB curve becomes stiffer. This is partly due
to the approximation on Eq. (8) in which only the
self-energy at the Fermi surface enters: X(k„). Tak-
ing into account the full k dependence of X in the in-
terior of the Fermi sea leads to the dashed curve of
Fig. 2, called DB'

~

The Dirac-Brueckner approach can also be applied at
finite temperatures. The major modification is the in-
clusion of finite-temperature Green's functions'4 for
the nucleons. The step functions 8(kF —ski) are re-
placed by the full occupation density

n/, = (exp[(&/,
' —

p,")/T] + I)

where p,
' is fixed by the density p. Similarly the two-

body Green's function can be reduced to an effective
one-body propagator and a temperature-dependent ex-
clusion operator Q. ' Because the pole in the effective

F (p, T) = U(p, T) —TS (p, T),

80—

60—
CD

DB

20—

1 2 4

FIG. 2. Compressional energy per nucleon in nuclear
matter vs the medium density p for the Dirac-Brueckner cal-
culation (full line) and the variational calculation of Ref. 4
(dash-dotted line). The influence of the momentum depen-
dence of the self-energy X is shown by the comparison of
the full and the dashed line.

one-body propagator now enters the integration
domain of the intermediate states, the I -matrix ele-
ments and thus X become complex. The imaginary
part of X, as we have checked explicitly, turns out to
be small. Therefore we use the quasiparticle approxi-
mation and neglect ImX everywhere, whereas ReX is
evaluated at the Fermi momentum kF, which is deter-
mined by the relation E&' = p, . In the DB approach

self-consistent solutions are obtained for the self-
energy X(k, T, p) and the occupation density n„. This
enables us to calculate the free energy F in terms of
the internal energy U and the entropy S:

(10)

U(p, T) =e/p —m,

—1 ' d kS(p, T) = J 3
((I —

n/,.) ln(1 —n~) + n/, In(n/, )j.
p 27r

(12)

P (p, T) = p t)F (p, T)/Bp. (13)

With the same OBE interaction as given before we cal-
culated isotherms of nuclear matter in a I'-p diagram,

The free energy F (p, T) completely describes the ther-
modynamics of the system. It may be differentiated,
for example, with respect to the density to yield the
pressure P (p, T):

displayed in Fig. 3. The results are in good overall
agreement with the variational calculations as well as
the Skyrrne-Hartree-Fock calculations. A liquid-vapor
phase equilibrium is observed at low densities and low

temperatures. The critical temperature we deduce is

T, =12 Mev and it is positioned at a density p,= 0.6po. This critical point is remarkably closer to the
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15—
We extended the Brueckner scheme to T&0 using
finite-temperature Green's functions for the dressed
nucleons and found a liquid-gas phase equilibrium
below a critical temperature of T, = 12 MeV.
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FIG. 3. The nuclear-matter isotherms in a pressure-
density (P p) diagram -for temperatures T=0, 10, 12.5, 15,
and 20 MeV.
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ground state than was calculated before. In agreement
with Ref. 3 we found only a very sma11 temperature
dependence of m'.

In conclusion, we have presented a calculation of
the equation of state of nuclear matter within the
Dirac-Brueckner approach. Starting from a OBE in-
teraction which fits free NN data, very reasonable
saturation and compressibility values are obtained for
the nuclear-matter ground state. The compressional
energy at higher density indicates rather stiff behavior.
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