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Dilaton and Chiral-Symmetry Breaking
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The spontaneous breaking of chiral symmetry in certain gauge models may also imply the spon-
taneous breaking of an approximate scale symmetry. This breaking will produce the dilaton as a
pseudo-Goldstone boson of spontaneously broken scale invariance.
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In four dimensions, Yang-Mills gauge theories pos-
sess a classical scale symmetry as there are no dimen-
sional parameters associated with the classical formula-
tion of the theory. In perturbation theory, the quan-
tum fluctuations of the gauge fields produce an explicit
breaking of the scale symmetry and cause the running
of the gauge coupling constant through the effects of
renormalization. In quantum chromodynamics, this
running is responsible for the asymptotic freedom and
the observed logarithmic scaling violations of deep-
inelastic processes. These scaling violations also lead
to the nonperturbative aspects of confinement which
produce the hadron mass scale through the mechanism
of dimensional transmutation. In the confinement
process, the effects of the explicit breaking of scale
symmetry are dominant, and there is no remaining
consequence of the original classical scale symmetry.

The addition of fermions in low representations of
the gauge group does not seem to alter this situation.
The confinement process in QCD seems to trigger the
spontaneous breaking of chiral symmetry for the light
quarks, which are in the fundamental triplet represen-
tation of the color gauge group. This spontaneous
breaking produces the observed Goldstone bosons of
chiral symmetry, the pions.

However, there may be other situations where the
spontaneous breaking of chiral symmetry occurs when
the explicit breaking of scale symmetry is not a dom-
inant effect. In this situation the spontaneous break-
ing of chiral symmetry may imply the spontaneous
breaking of an approximate scale symmetry. There is
an indication from numerical studies of lattice gauge
theory that the scale of chiral-symmetry breaking for
fermions in higher representations of the gauge group
can be relatively short compared to the confinement
scale.! If the chiral condensation occurs at a sufficient-
ly short distance scale, then the slow logarithmic run-
ning of the coupling constant at that scale may reflect
only a weak breaking of the scale symmetry of the
gauge interactions compared to the large spontaneous
breaking of scale symmetry associated with the chiral
condensation.

In terms of the one-gluon-exchange approximation,
the attractive force causing the fermion condensation
has a strength characterized by the product c,(f)
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x g2(n), where ¢,(f) is the quadratic Casimir opera-
tor of the fermion representation and g(u) is the run-
ning coupling constant of the underlying gauge theory.
The rough estimate of the chiral symmetry breaking
scale is provided by the criterion that c,(f)g*(n)
must reach a certain critical value for the condensation
to begin. If the gauge coupling constant is in a domain
where g2(u) varies only logarithmically with energy, it
follows that small changes in the value of the Casimir,
c(f), can lead to very different scales of chiral-
symmetry breaking.

Marciano has made the interesting suggestion? that
exotic quarks belonging to higher-dimensional
representations (e.g., sextets) of the SU(3), color
gauge group might form chiral-symmetry—breaking
condensates at a scale of order 100 GeV. If these ex-
otic quarks were also to carry the appropriate weak
charges of the standard model, then the condensates
would dynamically break the electroweak SU(2)
® U(1) gauge symmetries and generate masses for
the W and Z bosons with the wusual relation,
My = Mzcosf . This dynamical Higgs mechanism
can thus serve as an alternative to the hypercolor
scenario® in which entirely new gauge interactions are
introduced to provide the dynamical symmetry break-
ing required to give the W and Z bosons mass. Of
course, there may be other situations where fermions
in higher representations of the gauge group produce a
hierarchy of condensation scales at distances short
compared to the confinement scales and where the ex-
plicit breaking of scale symmetry is suppressed.

We wish to study the consequences of the approxi-
mate scale symmetry associated with the chiral con-
densates which occur in the region where the gauge
coupling constants are slowly running but where the
effective fermion coupling constants, c,(f)g?(w),
have reached the critical value. In such cases, it
should be possible to approximate the gauge theory by
an effective theory with a fixed but critical coupling
constant; the running coupling is only required to as-
sure that the effective coupling reaches the critical
value. The theory with the fixed coupling constant
now possesses an exact scale invariance in the chiral-
symmetry limit. When the chiral symmetry is spon-
taneously broken, the scale invariance is also broken
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spontaneously, resulting in the appearance of a mass-
less, fermion-antifermion scalar bound state, the dila-
ton, which is the Goldstone boson of scale symmetry.
Of course, the actual coupling constant is not fixed,
and the scdle symmetry is explicitly broken by the ef-
fects of renormalization. Consequently, the dilaton as-
sociated with these condensates should appear as a
pseudo-Goldstone boson with a mass of order of the
scale of the running coupling constant, which is rough-
ly the confinement scale in QCD, Aqcp.

We wish to examine the fixed—coupling-constant
theory for evidence of spontaneously broken scale
symmetry. Since the gauge coupling constant is small
compared to the effective fermion coupling constant in
the theories described above, it is probably sufficient
to consider a further truncation of the non-Abelian
theory to an effective Abelian theory with fixed cou-
pling constant which we will analyze in the one-gluon-
exchange, planar or ‘‘ladder,” approximation. This
planar approximation may actually correspond to a
large-N limit of the non-Abelian theory where the
Casimir operator for the fermions, c,(f), is also taken
to infinity.

Chiral-symmetry breaking has been extensively
studied in the one-gluon-exchange approximation.

0=sin{(a/a,—1)"?In[e®A/2(0)]} + (a/a,— 1) V2 cos{ (a/a,—1)/?In[e’A/Z(0) 1},

where a=g%/4n is the effective gauge coupling con-
stant, a, = /3 is the critical coupling for the strong-
coupling phase (a > «.), and 8= 0.55 is a parameter
in the asymptotic expansion of the fermion self-energy
function =(p). This equation must be solved for the
fermion mass scale, =(0). Although Eq. (1) has an
infinite number of solutions for = (0), only the largest
value of 2(0) corresponds to the ground state as all
other solutions have higher vacuum energy. The
ground-state solution for X(p) is also the only solu-
tion without nodes. For a/a, =1, the relevant solu-
tion is given by
O=m—(a/a,— DY2n[e®A/3(0)] — (a/ap— 1)1/2
(2a)
or
3(0)=e?* A expl — 7/ (a/a,—1)2]. (2b)

This result appears to be a disaster as the fermion mass
scale diverges with the cutoff, and all the dynamics as-
sociated with the spontaneous chiral-symmetry break-
ing occurs at the cutoff scale, A. This conclusion was
also reached in the numerical studies of Bartholomew
etall ‘

However, this conclusion may not be the only inter-
pretation of these solutions of the gap equation.
Miransky® has argued that the critical coupling «a,
should be viewed as an ultraviolet fixed point of the
strong-coupling phase. We must then require that the
gauge coupling constant « approaches the critical value

Johnson, Baker, and Willey* first obtained the chiral-
symmetry-breaking fermion self-energy function as a
solution of the homogeneous, massless Schwinger-
Dyson equation. However, these solutions do not cor-
respond to spontaneous breaking of chiral or scale
symmetry even though no explicit mass term was ap-
parently included. The scaling behavior of these solu-
tions reflects the fact that the fermion mass operator,
Y, has a finite anomalous dimension for fixed cou-
pling constant.> The situation concerning these solu-
tions was clarified by Maskawa and Nakajima® who
carefully studied the theory using cutoffs to control
the short-distance divergences. They found that there
was no spontaneous breaking of chiral symmetry for
weak coupling as all nontrivial solutions of the
Schwinger-Dyson equation required an explicit bare-
mass term with a cutoff dependence which reflected
the anomalous dimension of the mass operator. They
also found evidence for a spontaneously broken phase
at strong coupling.

Fukuda and Kugo’ have computed a complete set of
numerical solutions to the Schwinger-Dyson equation
for both weak and strong coupling. The strong-
coupling solution for the self-energy function in the
masséess case requires the solution of the gap equa-
tion,

(1)

as the cutoff tends to infinity. His limiting behavior is

given by
ala.=1+7YIn2(A/k),

A— oo,

(3)
This behavior for the gauge coupling constant gener-

ates an infrared scale proportional to « with the fer-
mion mass scale given as

3(0) =e3t1A S S L 4
( e exp (@/a— D7 PARE 4)

Miransky’s fixed-point interpretation appears to give a
complete treatment of the strong-coupling phase.
Chiral symmetry is spontaneously broken in this phase
generating a finite fermion mass scale. The Bethe-
Salpeter equations also have a massless solution for
the pseudoscalar bound state, the Goldstone boson of
spontaneous chiral-symmetry breaking.

Unfortunately, this picture appears to be incomplete
as there is no associated scalar bound-state solution to
the Bethe-Salpeter equations for the dilaton. Although
the original theory was completely scale invariant,
Miransky’s fixed-point solution appears to break the
scale symmetry explicitly. The possible resolution to
this paradox comes from the existence of a different
scale-invariant fixed-point solution for the theory.?
This solution results from the observation that there
are additional relevant operators in the strong-coupling
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phase which necessarily mix with the pure electromag-
netic interactions. This mixing generates the new in-
teractions and the scale-invariant fixed point occurs for
nontrivial values of the new coupling constants. The
dynamical generation of new interactions at the scale-
invariant fixed point also occurred for the exact solu-
tion of the large- N limit of n¢°® theory!'® which exhibits
spontaneous breaking of scale symmetry in a similar
strong-coupling phase.

In our case the new interactions are just the four-
fermion operators involving the scalar and pseudo-
scalar densities. We have previously observed that the
fermion mass operator yy has an anomalous dimen-

Ly=liy-8—gy-A—polb + 5 Gol (W) + (Wiysy)?],

where we have included a fermion mass term to pro-
vide explicit breaking in addition to the induced four-
fermion interactions. The consistent treatment of the
induced terms requires that we keep only the planar
diagrams with the same structure as the ladder dia-
grams of the vector-gluon interactions. The new dia-
grams are just those of the large-N, chirally invariant
Gross-Neveu model!! except that we must now in-
clude the radiative corrections of the vector-gluon
theory as shown in Fig. 1. These radiative corrections
effectively make the Gross-Neveu model renormaliz-
able in four dimensions.

The solutions for the vacuum structure of the modi-
fied theory can be obtained by use of exactly the same

sion at finite gauge coupling, being of dimension three
at zero coupling and approaching dimension two at the
critical point. In the planar limit we are_using, the
dimension of the four-fermion operator (yy)? is just
twice the dimension of the mass operator and ap-
proaches dimension four at the critical coupling for the
gauge interactions, a =a,.. To study the fixed points
of the vector-gluon theory we must include the
relevant four-fermion interactions. These induced in-
teractions must preserve the chiral symmetry of the
vector-gluon interactions.

We may study the scale-invariant fixed point using
the fermion Lagrangean,

(5)

methods as used for the pure vector-gluon theory.
The only modification of the Schwinger-Dyson equa-
tion depicted diagrammatically in Fig. 2 involves the
replacement of the bare mass parameter mg by an ef-
fective bare mass which includes a term generated by
the induced interactions:

mo=po— Go(d)o. (6)
The vacuum expection value of the fermion bilinear
must be computed self-consistently. Even in the chiral
limit, uo=0, we can expect that the effective bare

mass will not vanish, my=0, due to the induced terms.
This modification leads to a new gap equation,

oA =+432(0) ({[1 - Gola/a) AY7?)/ (a/a,— 1)} sin{ (a/a,—1)21In[eA/2(0)])

+[1+ Gola/a) A¥/ ] cos{ (a/a, —1)V2In[e’A/2(0)])),

where 4 = 1.2 is another parameter of the asymptotic
expansion of the self-energy function. The power
dependence on the cutoff, A, implied for ug and Gy is
precisely that expected from the anomalous dimen-
sions of the mass and four-fermion operators. We
must solve Eq. (7) to obtain the fermion mass scale,
2(0). As before only the largest-mass solution corre-
sponds to the ground state, and we obtain the result

3(0) = e®A expl — 0/ (a/a,—1)V?], (8)

where 0 < 8 =w. This result is similar to Miransky’s
except that the angle 8 will not necessarily be near =
and the approach to the critical point for the gauge
coupling constant, i.e., the beta functions, will differ.

_Go

> ggg +3 —_—

FIG. I. The fermion-antifermion scattering amplitude.
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Of course, it is clear that @ = a, remains the ultraviolet
critical point for the gauge coupling constant.

The gap equation, Eq. (7), has solutions for any
value of the four-fermion coupling constant G,. How-
ever, these solutions will generally be expected to
break the scale symmetry unless G, approaches a
fixed-point value. We can search for the scale-
invariant fixed point by examining the fermion-
antifermion scattering amplitudes for the poles associ-
ated with the Goldstone bosons of chiral and scale
symmetry. The pure ladder diagrams will not generate
even the pseudoscalar bound state as the effective bare
mass my will not vanish in the chiral limit except when

Z(p)= —— +
Ho

+ jl\l\l\:,v'%’l
Go 9 q

FIG. 2. The Schwinger-Dyson equation.
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Go=0. The poles will come instead from the bubble
denominators of the induced diagrams as shown in
Fig. 1. We calculate the bubble functions for both
scalar and pseudoscalar channels in Ref. 8. As expect-
ed, the pseudoscalar denominator always vanishes in
the chiral limit (uy=0). The scalar denominator
should also vanish, but only for a particular value of
the four-fermion coupling constant GoA?=m?(a/a,).
This value determines the ultraviolet fixed point of the
vector-gluon theory in the planar approximation.
Hence, the vector-gluon theory would preserve the
scale symmetry in the strong-coupling phase if the
operator mixing is properly taken into account. The
anticipated pole in the scalar amplitude is precisely the
dilaton pole expected on the basis of our original
speculations.

Actually, in our explicit calculations of Ref. 8, the
scalar denominator does not completely vanish even at
the fixed point. Instead, there remains a residual con-
tribution which we believe is a reflection of the failure
of the planar approximation to preserve the scale sym-
metry. We expect the scalar denominator to vanish at
the fixed point of a consistent, scale-invariant approxi-
mation to QED as may be the case for the full,
quenched approximation. Unfortunately, we have
been able to perform an analytic analysis only for the
planar approximation. We thus would encourage other
approaches, such as lattice methods, to search for sig-
nals of the dilaton.

Explicit breaking of both the scale and chiral sym-
metries can be introduced through the fermion mass
terms, no#0. Using our methods, we can compute
the effects of this symmetry breaking on the masses of
the Goldstone bosons. As expected the masses are
linear in w, for small symmetry breaking.® In the actu-
al application of our ideas to non-Abelian gauge
theories, there will also be explicit breaking of scale
symmetry coming from the slow running of the gauge
coupling constant. The dilaton will get mass from
these effects as well; unfortunately, we are not yet able
to compute the impact of these corrections.!?

We have speculated that spontaneous breaking of
chiral symmetry in gauge theories can be accompanied
by the spontaneous breaking of an approximate scale
symmetry. In these situations, the dilaton will exist as
a light scalar particle, the Goldstone boson of the scale
symmetry. The coupling of the dilaton to the particles
which become heavy at the scale of the chiral breaking
will be dictated by the appropriate current-algebra rela-
tions. In the Marciano scheme, the dilaton interacts
with particles of the 100-GeV scale, such as the W and
Z bosons. This could have interesting consequences
although the dilaton, like the physical Higgs particle,
may be difficult to detect as it has vacuum quantum
numbers. It may also be interesting to investigate the
dilaton scenario in supersymmetric gauge theories

where fermions transforming as higher-dimensional
representations of SU(3), occur naturally, namely, the
gluinos. These aspects are currently under investiga-
tion.
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