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Improved Bounds on the Dimension of Space-Time
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We treat the perihelion shift of the planetary motion and the Lamb shift in hydrogen in an arbi-
trary number of space dimensions. Comparison with experimental data shows that the deviation
from dimensionality four of space-time is less than 10 and 3.6 x 10 ", respectively, on the length
scales associated with these phenomena.
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In recent years the idea that the true number of
dimensions of space-time may differ from four has at-
tracted widespread attention. Based on the original
suggestion of Kaluza' and Klein various models have
been developed with the aim of unifying all known in-
teractions in a space of one timelike and D spacelike
dimensions. Of the latter a11 but three are thought
to be compact with a radius of curvature so small that
excitations of the additional degrees of freedom are
possible only at ultrahigh energies, leaving only an ef-
fectively four-dimensional space-time at energies ac-
cessible to us. However, the mechanism responsible
for fixing this effective number of dimensions to four
is still a mystery (see, e.g., Terazawas for possible
solutions to this problem).

Furthermore, the difficulties associated with the in-
corporation of gravity into the structure of quantum
field theory and, in general, the inherent infinities of
the relativistic theory of quantum fields have inspired
many physicists to consider the four-dimensional
space-time continuum not as fundamental but as the
low-energy appearance of a deeper theory. One of the
most widely considered possibilities, that space-time
on a small scale is a discrete lattice, is genera11y used
today as a gauge-invariant regularization scheme in
quantum field theory. It is found that Lorentz invari-
ance, broken microscopically by the lattice, is dynami-
cally restored at large scales, ruling out the main argu-
ment against this idea. More radical concepts altogeth-
er discard the notion of spatial points as fundamental

entities and consider them, e.g. , as expectation values
of quantum variables associated with matter fields.

If such considerations are anywhere near the truth,
it is not a priori clear whether space-time, in the large,
is a metric space of exactly four dimensions or whether
its dimensionality differs, however slightly, from this
integer value. (There is, in fact, no conceptual prob-
lem in considering physical phenomena in spaces with
a noninteger number of dimensions, so-called frac-
tals. Arbitrary dimensionality has been widely used in
the theory of phase transitions and renormalization
theory, and it has been recently shown that fractal lat-
tices can be applied for numerical calculations of Ising
models in any number of dimensions. 'o ") In this
contribution we try to answer the question of what
limits we can set with regard to the number of space
dimensions, effectively observable at low energies, on
the basis of existing experimental data.

A framework for an operational definition of nonin-
teger dimensions of a metric space has recently been
given by Zeilinger and Svozil' who generalized
Hausdorff's concept' to account for finite experimen-
tal resolution h. If we define the operational Haus-
dorff measure as

tt, ,v(a, 5) = lim infltt l X(diamB;)
8+ I

e ~ diamB. ~ 5I

where the (B, ) represent all possible coverings of a re-
gion of space-time with diameters between 5 and ~,
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d = 4 —(5.3 + 2.5) x 10 (3)

In this note we want to point out that other precision
experiments set much more stringent limits on the de-
viation of d from the value 4. We shall assume in the
following, in line with most other studies of this prob-
lem, that space-time has exactly one timelike and an
arbitary number D of spacelike dimensions, i.e.,
d =D+1. The basic idea of our argument is to make

the noninteger dimension d (5) is defined, e.g. , by

(i)'p,.pe~') I.=d = o,

where d obviously may depend on the resolution 8 (for
details see Ref. 12). Zeilinger and Svozil pointed out
that a value of d (4 would render all logarithmic
divergences in quantum field theory finite. They also
noted that the current discrepancy between theoretical
and experimental values of the anomalous magnetic
moment of the electron could be resolved if the
dimensionality of space-time is

use of the dynamical SO(4) invariance of motion in a
1/r potential. ' If the number of spacelike dimensions
D differs from 3, the Coulomb potential of a pointlike
source falls off as r and the dynamical symmetry is
broken. ' This then leads to anomalous contributions
to the Lamb shift in hydrogenic atoms and to the per-
ihelion shift of planetary orbits. Note, however, that
the physical effects of D&3 are, in general, different
from those of a deviation from the 1/r potential caused
by, e.g. , a finite rest mass of the photon or graviton.
In this case Gauss's law would be violated while, in
our present considerations, we assume it to be valid
exactly, albeit in DA3 dimensions. Experiments'6
designed to detect deviations from Gauss's law are,
therefore, unable to provide a limit on the deviation of
D from the value 3 under our assumptions.

Let us first analyze the problem of the perihelion
shift in D space dimensions. The standard textbook
treatment'7 of this problem is easily generalized. If we
introduce the variables x"= (ct, r, 8i, 82, . . . , 8D 2, $)
with the metric

g „=diag(gppi, g i r, —r sin 8i, . . . , —r sin 8i sin 8D 2) (4)

the generalized Schwarzschild geometry outside of a spherically symmetric source is obtained by solving the
(D + 1)-dimensional Einstein equation. The result is

D —3
fpg-=g-=1- '

(5)

where rp is an arbitary length scale that may be absorbed in the definition of m. We treat rp as a purely
phenomenological parameter assuming only that it is not too small ( ) 10 2~p m). Otherwise the logarithmic con-
tributions would become important. The relation of the parameter rp to the microscopic structure of space remains
to be investigated.

The geodesic equation for motion in the equatorial plane characterized by 8; = ir/2 for i = 1, 2, . . . , D —2 differs
from those valid for D = 3 only because of the modified form of gpp in Eq. (5). The final equation for the variable
u =1/r reads

d u/d$ +u =Dmu (u/up) +(m/h )(D —2)(u/up) (6)

where h = r2@=const is the conserved angular momentum. This expression can be analytically continued to
noninteger values of the dimension D.

As we are interested in small deviations from D = 3, we expand the right-hand side of Eq. (6) around D = 3, up
to terms linear in e = 3 —D:

d u u Nl u
2

+u =3mu 1 ———win +
2

1 —~ tin
dy 3 up h Qp

5@= 2m (pi —1)
= —6n m2/h + me = A@p+ m~, (10)

For nearly circular orbits we write

u (p) = Ap+A i coscu$

with lA i l ((Ap, and by inserting into Eq. (7) we ob-
tain

1 —co = 6mA p 6m/A ph 6m /h

with Ap = m/h2. The perihelion shift per revolution is
therefore

where hgp is the standard shift found in (3+1)-
dimensional general relativity. As h$ is known'8 to
agree with Agp to better than 5x10 for the planet
Mercury, & is bounded by

l~l (5xlo 'lapp/~1=10 '
for astronomical length scales.

Let us next derive a bound for & on microscopic
scales by considering the corrections to the Lamb shift
induced by &&0. To proceed we first generalize the
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H p = (Hp + Wi + W2 + W3) i' = E i'

with (lr = c = 1)

(12)

Hp=— 1 ti D —1 8 L
2m Qr2 r Br 2mr2

i

(13a)

usual treatment' of the level structure of hydrogenic
atoms to arbitrary integer-dimensional space, D
= 3, 4, 5. . . . The D-dimensional Schrodinger equa-
tion including relativistic and spin-orbit corrections is

By explicit calculation we find that the contributions to
E2,

1/2
—

E2pi/2 from the perturbations Wi, W2, and W3

are small compared to that from Hp [smaller than
(10 2 eV)eZ4], if the length parameter rp in Eq. (14)
is not very much smaller than the Planck length
(10 33 cm). The D dependence of Hp induces a split-
ting between the 2p&i2 and the 2sii2 states even in the
nonrelativistic limit which is linear in e, because it ex-
actly vanishes in three space dimensions as a result of
the SO(4) symmetry of the quantum mechanical
Kepler problem:

eV2Ap - (E —eAp)
W,=, 8', =

8m~ 2m
(13b)

(2n, /, & (»», & (Za) m
LS 3 —e 3 —e

= —Z2e x (2.27 eV).
ti(eA p)

W,=, (s L).
2m r

For light atoms the terms W;, i = 1, 2, 3, can be treated
as perturbations. Ap is the solution of the D
dimensional Poisson equation. Whenever this does
not lead to divergences we use a nuclear point charge
yielding the Cou1omb potential in D dimensions:

eA p
= —(Z n/r ) (rp/r ) (14)

Having obtained the explicit dependence of the
Hamiltonian on the number of dimensions for s and p
states, we can analytically continue the energies to ar-
bitrary values of D. Expanding around D =3, we can
calculate the coefficient of the term linear in e = 3 —D
with the help of the generalized Hellmann-Feynman
theorem (which is derived using the D-dimensional
normalization condition),

dE„
dD

However, for W& we must use an extended charge dis-
tribution which modifies the potential inside the nu-
clear radius.

The eigenvalues of the operators L (the quadratic
Casimir invariant) and s L for the generalized states
of angular symmetry si/2 (L =0, j= —,

' ), p&/2 (L =1,
j = —,), and p3/2 (L = 1, j= —, ) can be determined by
group-theoretical methods ' as

0 (s /, ),
(15)(P 1/2 P3/2)

0 (s /2),

2(s ' L) = ' D 1 (pi/2),

(p3/2).

If the number of spatial dimensions should differ from
3, the contribution (18) would come in addition to the
Lamb shift as calculated from radiative corrections of
quantum electrodynamics. Since the latter increases as
Z, the hydrogen atom provides the best experimental
test for a possible nonzero value of e. The present un-
certainty of the experimental and theoretical values
of the Lamb shift in hydrogen,

l GAEL's ~ELs I ( 0 02 MHz

=8.2x10 "eV, (19)

restricts the deviation from three dimensions to

3.6 x10-" (20)
on length scales comparable to the Bohr radius of hy-
drogen. This bound is more than 4 orders of magni-
tude smaller than the value (3) advocated in Ref. 12.

In conclusion, we have shown that the dynamical
symmetry associated with motion in a I/r potential
provides extremely stringent limits on any possible de-
viation of the number of dimensions from the integer
value of 3, on both atomic and astronomical length
scales. In fact, the bound (20) makes D, besides the
electron g factor, the best measured, but probably least
understood, dimensionless constant in physics.
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Note added. —After completion of our manuscript
we learned that Jarlskog and Yndurain have obtained
the same limit D —3 & 10, by considering the effect
on periastron motion.

=Jt r drf" (r) f" (r)BH
BD D
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