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Dephasing Time in Disordered Systems
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We show that interaction effects give rise to a cutoff 1/T, g in the "diffusion, " the basic propaga-
tor of the disordered interacting electron gas. We calculate 1/~, ~ to lowest order in the disorder but
to all orders in the interaction, and exhibit its relation to the scaling variables of the disordered-
interacting-electron problem. This framework provides an explanation for the anomalous enhance-
ment of inelastic processes which is observed experimentally in systems close to the metal-insulator
transition.
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The quasiparticle inelastic lifetime, 7;„,is a central
quantity in localization theory. It sets the scale over
which an electron propagates without undergoing in-
elastic scattering, via the Thouless' relation i;„(T)
=Dr;„(T),and has been studied experimentally in
magnetoresistance measurements. 2 Since the origin of
inelastic scattering is the diffusion-enhanced Coulomb
interaction, it is important to incorporate this quantity
into the more general framework of a theory including
localization and interactions. The first calculation of
7;„(T),due to Schmid, 3 revealed that disorder in-

creases the inelastic rate leading to 1/ 7;„(T)—T~/2

which is, at low temperatures, much larger than the
Landau Fermi-liquid theory expression I/7;„(T) —T2.

Later, Fukuyama and Abrahams4 identified I/r;„(T)
with 1/r», the mass of the Cooperon, i.e., the dif-
fusive propagator in the particle-particle channel.
Several mechanisms of inelastic scatterings a have
been considered. These are reviewed by Abrahams. 9

In this Letter we show that inelastic effects provide a
cutoff I/7~& to the "diffusion, " i.e., the diffusive
propagator in the particle-hole channel. This result
can be shown to be consistent with particle and spin
conservation. In the framework of the existing scaling
theory of localization and interactions, the inelastic
rate increases very fast as we move to larger scales,
suggesting that inelastic effects are dominant close to
the metal-insulator transition. In particular,
interaction-induced divergences might be cutoff by
I/7~&(T) and not by the temperature as is usually as-
sumed

%e study the dephasing time in the framework of
the scaling theory of interacting disordered fermions

L, (q, n) = 1

Lo' —X Dq2+ Z 0 + I/spa

The variable g is the ratio of the renormalized density

FIG. 1. Bare diffusion and diffusive vertex.

using the formulation of Castellani et al. '2 We define
the scaling variables of this theory and summarize the
relevant notation below. The diffusion propagator, L,
is defined by the sum of graphs describing electron-
hole propagation without energy exchange between the
electron and hole line. To lowest order in the disorder
and in the absence of interactions, it is given by Lo,
which sums the graphs in Fig. 1. Interaction effects
result in a self-energy correction X. At zero tempera-
ture'2 the self-energy correction results in a modifica-
tion of the bare diffusion constant, a rescaling of the
frequency by a factor Z, and an overall rescaling of the
diffusion propagator by a factor g2. The new feature to
be discussed in this Letter is that at finite temperatures
X(O = O, q = 0) no longer vanishes and it gives rise to
the diffusion inelastic lifetime I/r».
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of states to the bare density of states Wo.
' The other

scaling variables are defined in terms of the static am-
plitudes: I

&
and 1 2 denote the Hartree and Fock static

scattering amplitudes. They are related to the singlet
and triplet scattering amplitudes via I, = I

&

——,
'

1 2,
I. =--r.I

2 2

The scaling variables I
&

and V2 are defined by
I",= ( I, , I 2

——( I 2. This definition eliminates ( from
the scaling equations. '2 The self-energy graphs of
lowest order in the scaling variable t = I/(2m) NoD
are shown in Fig. 2. The calculation is done to lowest
order in t but to all orders in the interaction. There-
fore the wavy lines in Fig. 2 will be expressed in terms
of the dynamical amplitudes (ladder resummations of
static amplitudes and diffusions) defined as

V' V V' V 'V ' V
I
I

(a)

C
(b)

C
(c)

FIG. 2. Self-energy diagrams to lowest order in I.

"2,Dq'+ Z I~ I

(Dq')
Dq'+Z i

'Dq'+z, f~/
'

We use the notation Z2 = Z + I 2.
At zero temperature the graphs in Fig. 2 are proportional to 0, the external frequency, and q2, the external mo-

menta. We evaluate these diagrams at finite temperature T, using the Matsubara technique. The only part which

is not manifestly proportional to 0 and q2 originates in Figs. 2(d) and 2(h) and is given by

T d'k 1
[U, (k, o)t) ——', U2(k, (ot) ]

&o, &,«, +n" (2n) *
Dk +Zl~t+nl

Note that the sum over the Matsubara frequencies rot in the expression for X' is restricted. Nevertheless, it is
not correct to conclude that X' is proportional to Q. The sum on cot crosses zero, a point where the summand is
not analytic. The sum must be evaluated along the lines of Ref. 4, using the analytic continuation technique which
gives rise to a contribution from a branch cut which does not vanish as the external frequency and momenta go to
zero:

X(0, 0) = ) .
"

I „L„(p,x)I mIU, (x) ——', U, (x) I~.
mNo — sinhPx"

The subscript 8 indicates that a replacement ~t0~ —ix is performed to obtain the retarded part of these func-
tions.

The presence of a mass in the particle-hole channel seems, at first sight, to contradict particle conservation. The
density-density polarization function has the skeleton structure shown in Fig. 3(a). In the presence of long-range
forces one separates the singlet amplitude I, into a short-range part and a long-range part. Only the short-range
part I," enters m which is irreducible with respect to the long-range Coulomb force. Figure 3(a) corresponds to
the following expression:

m(q, &)=
„

dn

dp,

2%0K 0

( 4@I 4 CN+ +

(3a)

z(q, co) = ~ + (» lr
~I )~+ (» Ir Ir ~I p)+ "

FIG. 3. (a) Skeleton structure of the density-density correlation. (h) Skeleton structure of the spin susceptihility.
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2NoKi 0
y(q, 0) =x„——

L ' —2No
~N +cd[+ f8+

(31)
I'r

X„is the static susceptibility, and K, the triplet spin
vertex at zero frequency.

The mass in the triplet channel is canceled by a con-
tribution from the Matsubara sum in Eq. (31) which
does not vanish as 0 0. The cancellation in the
triplet channel is slightly different from its singlet
counterpart. Graphs 4(b), 4(e), and 4(f) do not con-
tribute to Eq. (31) since they only renormalize r& and

The first diagram in Fig. 3(a) is dn/dp, , and K is the
charge vertex at zero frequency. The presence of a
mass term in the denominator of the second term of
Eq. (3a) apparently makes it impossible to satisfy the
condition w (q = 0, 0 ) = 0 which follows on very gen-
eral grounds from particle conservation. %e show that
this is not the case; X(0, 0) is canceled in 7r(q, 0 ) by
the corrections to l,".

The perturbative evaluation of the correction to the
amplitudes (see Fig. 4) contain terms which cross a
point of nonanalyticity as the sum in Eq. (3a) is per-
formed. Only graphs of the lowest order in the
dynamical amplitude [i.e., graphs (a) and (1) in Fig. 4]
eliminate I/r» from the density-density correlator. In
fact, the contribution of nonanalytic pieces of graphs
4(c)-4(f) to Eq. (3a) cancel among themselves. In-
serting the expressions for the graphs depicted in Figs.
4(a) and 4(b) and doing the Matsubara sums by stand-
ard techniques, we find branch-cut contributions
which exactly cancel I/r» and restore particle conser-
vation. This cancellation, which takes place to all or-
ders in the interaction strength, is a strong check on
the validity of the renormalization scheme for the
interacting-electron problem.

Similar considerations apply to the spin-spin correla-
tion function. Its skeleton decomposition, shown in
Fig. 3(b), and discussed in detail in Ref. 13, can be
summarized in

(c)

FIG. 4. Scattering-amplitude renormalizations.

I/r» in Eq. (31) is canceled by graphs 4(a), 4(c), and
4(d).

We note that Eq. (2) contains a logarithmic diver-
gence in two dimensions. However, this divergence is
very different in nature from that of the other scaling
variables of the interacting-electron problem, D, Z,
and I'2. '4 Perturbative evaluation of these quantities
reveal that they are ultraviolet divergent; all momenta
within the region T ~ Dq2 ~ I/r where the Wilson re-
scaling procedure is applied make equal contributions
to their renormalization. I/~», on the other hand,
does not contain new ultraviolet divergences. The
scale dependence of I/r» arises from the scale depen-
dence of D, Z, and Z2= Z +r2. It is infrared diver-
gent because momentum scales 0 ~ Dq2 ~ T make an
equal contribution to the integral. This divergence is
not cured by the renormalization group. A lower cut-
off has to be introduced by a self-consistency require-
ment. As pointed out by Fukuyama, ' I/T» enters
physical quantities at finite momentum scale Dq2—I/v» and we will use this as our lower cutoff in Eq.
(2). Evaluating Eq. (2) with this prescription we ob-
tain an expression for I/v» = f X(0, 0):

dA. Z 3 Z2 Z2 Z=4r„ 2(Z2+Z)l, arctan —+ I 2 arctan ——arctan —. (4)

This expression is valid to lowest order in t but to all orders in the interaction amplitudes.
In the weakly localized regime, we can ignore the scale dependence of r, I'2, and Z, to solve Eq. (4) for I/~».

1 3=2mt l", I 2 ln
1

T7'pg && 1,'2(Z, +Z) r(r, +[3/2(Z, +Z)]r,') '

(&)
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For strong disorder, the scale dependence of Z2, t,
and Z is important. These scaling variables flow to
strong coupling and the critical behavior of the in-

teracting-electron problem is not fully understood. '6 '

Nevertheless we can use Eq. (4) to make qualitative
statements about T7.».

In the framework of the scaling theory of the in-
teracting-disordered-electron problem the scaling vari-
ables Z2 and I 2 grow much faster than Z as we scale to
longer distances. Therefore, even if I/r» (( T at the
Fermi-liquid level, i.e., before scaling is applied, re-
normalization effects cause I/r» to grow, suggesting
that inelastic effects are important close to the metal-
insulator transition. It is, therefore, very likely that
the divergences which arise as a result of interactions
are cut off by I/r» and not by T as has been done so
far.

In the pure localization problem without time-
reversal symmetry (the unitary case), the particle-
particle channel is suppressed and the logarithmic
singularity in the conductivity is driven by the
particle-hole channel. The presence of I/T, t, tfl tlM

particle-hole channel is then consistent with the physi-
cal expectation that inelastic scattering will cut off the
logarithmic singularity even in this case. Since the log-
arithmic divergence in the unitary case is higher order
in (kFl ) it is usually dominated by interaction ef-
fects and has not yet been observed. The only possible
exception to this may be the case of short-range in-
teractions, 'z which may be produced in a thin film with
external screening provided by a nearby metallic sheet.

In the present framework the particle-hole lifetime,
I/r», is identical to the particle-particle propagator
lifetime I/r». In fact, by reversing an electron line in
the Fock diagrams in Fig. 2 we recover the diagrams of
Fukuyama and Abrahams. The role of I/r» as a pair
breaker has been discussed extensively. s Our calcula-
tion provides some theoretical justification for the
anomalously enhanced pair breaking observed in sam-
ples ~hose normal state is close to the metal-insulator
transition.

Finally we note that 'Tpp is measured in magne-
toresistance experiments. Expression (5), which is
correct to lowest order in the disorder but to all orders
in the interaction static amplitudes, should be used in
the analysis of the experimental data to extract a com-
bination of the interaction amplitudes. We suggest

combining of this data with measurements of the tem-
perature dependence of the conductivity and the mag-
nitude of magnetoresistance which determine different
combinations of amplitudes to test the consistency of
the scaling theory of the metal-insulator transition.
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