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Exact Finite-Size Effects in Surface Tension
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Exact finite-size effects for the interfacial free energy of the planar Ising ferromagnet are ob-
tained. They are compared ~ith a scaling function estimated by Mon and Jasno~ using Monte Car-
lo simulation.
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The theory of finite-size scaling and of finite-size
effects in general has recently received new impetus
from two sources. First, it is becoming clear that
Monte Carlo simulations can only be useful for es-
timating thermodynamic limiting quantities when fur-
nished with proper extrapolation procedures. 2 This
means the fitting of parameters in some assumed
finite-size form which preferably has a theoretical jus-
tification. Another use is in finite-dimensional
transfer matrix methods, which enable one to calculate
quantities in a strip of finite width but infmite length.
Extrapolation is then made over matrix dimension.

This Letter presents new results for finite-size ef-
fects in the surface tension, denoted ~ (also called the
interfacial free energy), for the Ising model. This in-

vestigation was stimulated by recent work of Jasnow
and Mon, 3 s who addressed the amplitude relation

To/II = const, (I)
where the surface tension behaves in the critical region
as r —70tt' with t=(T, —T)/T, and the correlation
length ( behaves as g —(Ot ". The indices are related
by Widom scaling (d —1)u=p, .6 Equation (1) is
rigorous for d = 2 provided a little care is used in the
definition of g 7; this follows from duality. For d = 3,
the dual model is the ferromagnetic plaquette one;
dimensional scaling and universality have to be in-
volved to justify (1).7

At present, experimental work for d=3 on (1), re-
viewed by Moldover, s shows a 30% or so discrepancy
from best theoretical estimates; these were obtained
from Monte Carlo data which is bedeviled by finite-
size and by finite-time effects. If the surface tension is
smitten as

~ = r, tt'X(l. t+"), (2)

in the usual scaling Ansatz, then for d=2 Mon and
Jasnow used the form (which we show below to be an
approximate one)

F(x) =1+B/x, (3)

with p, = u = 1 to get so and B.
The agreement of ro with exact results9 " for d = 2

is satisfactory, lending confidence in the d = 3 work. It
has been known for some time that many different de-
finitions of surface tension give the same result for
d=2. '2 In the present work we evaluate F(x) in (2)
exactly for the geometry used by Mon and Jasnow3; we
shall show elsewhere that F(x) depends markedly on
the type of definition used for r; fioating interfaces
and ones pinned at the ends have quite different forms
for F(x).

We consider a square lattice wrapped on a cylinder
of height N and circumference M with coupling Ki
parallel to the axis and K2 in the other direction.
Phase separation is induced by the imposition of
boundary conditions 9t on the faces of the cylinder
(i.e. , otherwise free edges of the lattice): If the spin
variables a. (i ) have the value +1 on the top and —1

on the bottom, denoted 9P = + —,then there must be
an odd number of domain walls running around the
cylinder, whereas if 0.(i) = + 1 on both top and bot-
tom, denoted 9f =+, then there will be an even
number of such walls. Provided the thermodynamic
limit is taken with M/N fixed, M ~ and N
then for low enough temperatures it is conjectured
with 8'= + — (lN= +) with probability one there is
exactly one (exactly no) such domain wall. "'3'"

Thus the proper definition of surface tension is

r = lim~(M N),
where

r(M, N) = —M 'ln(Z+ /Z+),
Z (g) being the canonical partition function for
boundary condition A. This has been evaluated exact-
ly's for any Mand N, giving

Z+-/Z+ = [T(MN) —I]/[T(MN)+ I], (5)
with

T(MN) = expxilncoth[ —,
' Mu&(N) ], (6)



VoI UME 56, NUMsER 1 I PHYSICAL REVIEW LETTERS

where v~(N) & 0 and

coshv& = cosh2(Ei —K2' )

+ sinh2Ki sinh2K2 (1 —cost, )

with the t~ solutions of
' $/2'

~ IPl 1

AB
(e"—A ) (e"—8)

(eit g —i) (eil g —i)

(7)

(8)

vg =vo+ up(n j/N) 2+ O(1/N4)

for j= 1, ~ ~ ~ with

(9)

where exp(2K, ")= cothK, , j= 1, 2, and A = exp[2(Ki
+K2)], 8=exp[2(Ei —K;)]. The root t=0 of
(8) is not allowed. Provided vo & 0, where vo
= 2(Ki —K2 ) is the surface tension for the infinite

system, the roots are

composed of two parts: There is the flexural entropy
of a domain wall in isolation, included in the incre-
mental free energy 2(Ei —K2 ) of a domain wall in
isolation. Then there is the entropy of the domain
walls treated as one-dimensional fermions on a line of
length N. This separation is, of course, an approxima-
tion but a free-energy minimization gives the first part
of (13) for X) vo., there is an infinite number of
domain walls as M ~ so that there is no essential
difference between 9t+ and 3F+. The potential pro-
liferation of domain walls was anticipated by Fisher,
Barber, and Jasnow'8 and placed on a more precise
footing by Privman and Fisher'9 and by Brezin and
Zinn-Justin. The result (13) is rigorous.

Finally we consider the finite-size scaling problem,
as suggested in (2). Following the Privman-Fisher hy-
pothesis, 2' we would expect (2) to be written as

uo
' = 2 sinh2Ki' sinh2K2 sinhvo. r —L 'f (ci tl), (i4)

At T= T„vo=0 and

v, = ~(2j- i)/(2N+1) + O(i/N'). (io)

It follows from (9) that for vo & 0 (i.e., T & T,),
iim .(M N) =.,+ u, (~/N)'+ O(i/N4). (»)

The fluctuations of the domain wall are restricted by
the finite geometry, giving an entropic repulsion as ad-
vocated by Fisher and Fisher'6 in a random-walker or
solid-on-solid model of the interface.

It is known that an interface of length M pinned at
its ends fluctuates on a length scale of M't2. '7 With
the cylindrical boundary conditions we would expect a
crossover phenomenon in terms of the variable
n = N/M'i2. It follows from (5) to (8) that

lim M {~ (M, n M't2) —vo }

where L is the system size, ci is nonuniversal [depend-
ing on Ei(c) and E2(c)], and f(y) depends on the
shape of the lattice and on the particular definition
used for i. The last point will be explored elsewhere.
The dependence on the couplings comes out nicely as
follows: From the basic Widom scaling idea, we ex-
pect r$2 ——,

' in units of kTwhere g2 is the correlation
length in the direction of K2. Wu22 showed that

(i ' = 4(K2 —Ki" )

g2 '4(Ei —K2 )

(notice the low-temperature anomalous factors of 2).
Define the scaled lengths by (M, N ~, t 0)

s —iimM/(2= M, s —limN/gi = N.

Then

= —lnXexp[ —uo(~ j/~)']. (i2) s —lim(2r(2) = F(MN),

where
The asymptotic behavior is —uon 2/2n2 as a 0 lead-

ing back to (11), whereas as n ~ the behavior is——Ina.
The previous set of results should be typical (at least

at low enough temperatures stricto sensu) of ensembles
with one and no domain wall running around the
cylinder. 9'4 If we take N=exp(A. M) we anticipate
configurations with many domain walls, depending on

F(MN) 1
1

S(MN)+1
M $(MN) —1

with

S(M N) =expXlncoth[ —,
' M(1+ z )' '],

J

where

(17)

(18)

iim .(Me" )=0 if~tv,
M~ oo

tan Az ——N.J (19)

X+ vo 'f 0 ~ & ~ vo. (i3) The dependence on Ei(c) and K2(c) is contained en-
tirely within Mand N. As Mand N oo,

This result can be understood as follows. The entro-
py of a "gas" of n domain walls on the cylinder is S(MN) —exp[2N(2n M) 't e™]
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This implies that the Mon-Jasnow &nsa« ts not exact
(but it seems very good numerically). The behavior
for small M, Nis given by

S(M,N)— (21)

q = exp( —,' n M—/N )

The reader familiar with theta functions should find
that if M = N, then

lim $(M,N) = (1+~2)t~2.
M~O

(22)

Returning to the Mon-Jasnow function

X(Mr ) —1+a/Mr

we find 8,„„,-0. 86 837 08to be compared with the
Monte Carlo estimate BMc —0.7323.

The dependence of the finite-size scaling function
on size ratio and on K, (c) and K2(c) is thus more
complicated than in (14) et. seq.
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so that if the argument of exp is small, '7's

s —lim(2r(2)

I in(N/v'M ) + O (1)I. (20)
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