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Sharp Diffraction Maxima from an Icosahedral Glass
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We consider densely packed assemblies of icosahedra, such that icosahedral bond-orientational
order is enforced throughout the sample. The peaks in the calculated diffraction patterns may be
put in a one-to-one correspondence with the electron and x-ray diffraction patterns from
icosahedral Al-Mn alloys, allowing the determination of the packing-unit size. We show that these
maxima are not Bragg diffraction peaks, but have an intrinsic width, and may be understood as
resulting from the interference between two or more characteristic lengths, as originally discussed

by Hendricks and Teller.

PACS numbers: 61.10.Dp, 61.40.+b, 61.55.Hg

The discovery! that rapidly quenched samples of
several transition-metal aluminum alloys produce elec-
tron diffraction patterns with ‘‘sharp’ spots and
icosahedral point symmetry has initiated a flurry of ex-
perimental and theoretical investigations. Long-range
periodic translational order is incompatible with
icosahedral point symmetry. While the existence of
Bragg reflections, delta functions in reciprocal space,
requires long-range positional order, this need not be
periodic. This point has been exploited by several
theories which model the icosahedral phase as space-
filling structures which have long-range bond-
orientational order and long-range, but nonperiodic,
positional order.?2 A recent high-resolution x-ray
powder diffraction measurement on samples of
quenched AlgMn found that the icosahedral-phase dif-
fraction peaks were not resolution limited.? Of the dif-
fraction peaks which were sufficiently intense that the
width could be measured, the half width at half max-
imum (HWHM) was in the range 0.009-0.04 A~!.
This implies correlation lengths in the range of
100-300 A, which must be reconciled with the
electron-diffraction observation of bond-orientational
order across grains ~— 1 um in extent.

Previously, Shechtman and Blech reported the
results of diffraction simulations from assemblies of
icosahedra packed so as to preserve bond-orientational
order throughout the sample.* The calculated diffrac-
tion patterns exhibit icosahedral symmetry, and con-
tain strong, sharp peaks, a result which may seem
somewhat surprising in view of the large apparent de-
gree of disorder in the structure. They found ‘‘great
similarity’’ between the calculated peak positions and
the experimental electron-diffraction patterns, and
proposed that these peaks arise from ‘‘the periodicity
in the atomic planes.”’

In this Letter, we show that the diffraction pattern
from such arrays is composed of interference maxima
with different widths; although the sharpest are limited
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by the finite size of the present simulations, others are
several times broader. Therefore, one cannot discuss
the maxima as arising from coherent Bragg diffraction
from periodic planes. Nevertheless, the calculated
scattering pattern is in excellent quantitative agree-
ment with the experimental peak positions, and quali-
tative agreement with the experimental peak intensi-
ties and widths. We show that these sharp maxima can
be understood in analogy with the formalism
developed by Hendricks and Teller for interference
patterns from partially ordered layer lattices.” We
therefore speculate that icosahedral alloys may be
characterized as glassy structures in the sense that
there is no long-range positional order, but that short-
range chemical order is present, leading to a structure
of densely packed units of locally icosahedral sym-
metry.

We first discuss the diffraction pattern generated by
the packing of icosahedra vertex-to-vertex. We em-
phasize that the physical basis for such a model is clus-
ters of atoms having icosahedral symmetry (i.e., a cer-
tain set of twofold, threefold, and fivefold axes) and
not necessarily rigid clusters shaped like icosahedra.
Starting from an initial seed, icosahedra were succes-
sively attached to a randomly chosen vertex, provided
that each new icosahedron did not overlap another
icosahedron already present in the array. Attaching
the units so that their centers and common vertex are
collinear enforces a degree of order on the model, so
that each icosahedron has the same orientation. The
growth process was continued until a cube of length
20a, where 2a is the distance between two nearest-
neighbor icosahedra sharing a vertex, could accommo-
date no further units. The packing fraction for the
1036 icosahedra packed into this cube is ~ 50%.

In order to make contact with diffraction experi-
ments, we imagine a point scatterer placed at the
center of each icosahedron, and consider the structure
factor S(Q), which is proportional to the scattered in-
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tensity:
S(Q)=13,exp(iQ-R) I,

where the index jruns over all N sites in the structure.
For a periodic structure, S(Q) consists of a series of
Bragg diffraction peaks with peak intensity proportion-
al to N2. These occur for wave vectors Q where all
unit cells scatter coherently. In a finite sample of
characteristic dimension L, the Bragg peaks have
HWHM w ~ #/L.

Figure 1(a) shows the most intense local maxima of
S(Q) in one quadrant of a plane perpendicular to a
twofold axis of the icosahedral units. In order to
display the similarity between this calculation and the
experimental electron-diffraction pattern, we have
filled in the circles corresponding to the published dif-
fraction spots in Fig. 2 of Ref. 3. In fact, spots corre-
sponding to all of the open circles within the electron
micrograph field of view are experimentally observed.®
This striking agreement between the two patterns is
also seen in planes perpendicular to threefold and five-
fold axes. By a peak-to-peak match of the calculated
and experimental peak positions, we determine that
the distance between the centers of two adjacent
icosahedral clusters in this model is 2a =19.5 A. As
expected, S(Q) has icosahedral symmetry, within the
sampling error of the finite-sized simulations.

In order to discuss the size and shape of these maxi-
ma in S(Q), we have plotted this function along the
twofold, threefold, and fivefold axes in the top traces
of Figs. 1(b)-1(d). The strongest peaks of the simula-
tion approach the maximum possible value of N2, and
have wof 0.15/a. Therefore, the strongest peaks from
the simulation are as intense and as sharp as those due
to coherent diffraction from a periodic structure of the
same size. On the other hand, the simulation exhibits
weaker peaks, which can also be indexed to the
electron-diffraction patterns.

We have studied the behavior of several of the dif-
fraction peaks as a function of simulation size. In or-
der to obtain the peak shape, we performed an ensem-
ble average over several symmetry-equivalent direc-
tions and several samples. We find that for sufficient-
ly large simulations, the diffraction maxima have an
intrinsic width that varies for different maxima. The
maxima in S(Q) evolve as a function of simulation
linear dimension L as follows: For simulations smaller
than @/ wfor a particular peak, the linewidth is ~ 7/L,
and the peak intensity is proportional to N2. As the
size of the simulation is increased beyond some corre-
lation length for that peak, the width reaches a finite
limit and the peak intensity is proportional to N. This
crossover behavior, which is different for different
peaks, shows that the scattering for sufficiently large
samples is not coherent across the sample, and there-
fore the maxima cannot be described as Bragg diffrac-
tion. In contrast, models based cn quasiperiodic or in-
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FIG. 1. (a) Intensities of diffraction maxima in one quad-
rant of the plane perpendicular to icosahedral twofold axis,
calculated for a randomly grown network of icosahedral
units, as described in the text. The area of each circle is pro-
portional to the maximum calculated intensity. Filled circles
and letters labeling spots are identified with the electron-
diffraction pattern in Fig. 2(a) of Ref. 3. (b)-(d) Calculated
ed scans along twofold, threefold, and fivefold axes. Upper
traces are numerical results from the same simulation as Fig.
1(a); lower traces are calculated from the HT model, Eq.
(1). There is an arbitrary scale factor between the two sets
of calculations.

commensurate order? predict delta-function Bragg
peaks. This is apparently true even if the quasiperiodic
pattern is distorted by local rearrangement of the
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units.” Therefore, our simulations provide the first
theoretical framework for the observation of bond-
orientational order over the full extent of a grain with
the significantly shorter translational correlation
lengths. The widths of several peaks are compared
with the experimental values (from Ref. 3) in Table I,
where it can be seen that the simulations produce
peaks which are sharper than those observed experi-
mentally.

Icosahedra of the same orientation can also be
packed so as to share edges or faces rotated by 60°.8
The edge model also produces sharp diffraction maxi-
ma with icosahedral symmetry, but the results cannot
be indexed with the experimental electron-diffraction
patterns. On the other hand, the face model produces
a diffraction pattern that generally matches the
electron-diffraction patterns, although the agreement
is slightly worse than that of Fig. 1(a).® For example,
peaks b and j do not show up as sharp maxima for any
size simulation. Apart from this difficulty, this model
may be indexed to the observed diffraction patterns if
the center-to-center distance of peaked icosahedra is
10.9 A. The structure of a-AIMnSi is essentially a bcc
lattice of icosahedral clusters of atoms with their faces
directed toward one another, precisely the same as the
local configuration of this random-packing model. In
that system, the center-to-center distance is 11.0 A.
This good agreement suggests an atomic basis for the
randomly face-packed icosahedral units discussed here.
The relationship between icosahedral AIMn and crys-
talline a-AIMnSi has been discussed from a different
viewpoint by Elser and Henley.!°

Having established that the model of random pack-
ing with icosahedral symmetry gives sharp diffraction

TABLE 1. Widths of icosahedral diffraction peaks. Ex-
perimental results are from Ref. 3; simulations and HT
model are for vertex qackings as described in the text. En-
tries of <0.003 A” have not saturated for the largest
simulations performed: 109454 sites in a cube of edge 100a.

HWHM (A7)

Indices Expt. Sim. HT
(211111) 0.008 0.040
(220011) 5 0.007 0.041
(110001) A 0.018 0.021
(111010) ¢ 0.014 0.004 0.025
(100000) a 0.009 =<0.003 0.009
(110000) 4 0.022 =<0.003 0.015
(220002) j 0.041
(210001) & 0.04 =0.003 0.029
(111000) e 0.021 0.018
(111100) m 0.020 0.021
(101000) 0.021 0.009
(110010) ¢ 0.020 0.013
(200000) r 0.04 =0.003 0.018
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peaks in agreement with the experimental results, it is
natural to enquire as to the cause of these sharp maxi-
ma. As discussed above, they are not Bragg peaks
resulting from coherent contributions of the scattered
amplitude from each site in the sample, but may be
understood on the basis of the following simple model.

We initially restrict our attention to wave vectors Q
along the fivefold axis. The projection onto one par-
ticular fivefold axis of the vector joining any two ‘‘at-
tached’’ icosahedra is either *+2a or *2a cos63.43°
= +(47—2)a/5, where 63.43° is the angle between
two adjacent vertices of an icosahedron (see Fig. 2).
Consider a cluster of vertex-connected icosahedra.
The projection along a fivefold axis of their separations
consists of sums and differences of multiples of the
two distances above. Because the simulated cluster
was grown randomly, the sequence of displacements
will generally appear to be random. This is similar to
the model of scattering from partially ordered struc-
tures discussed by Hendricks and Teller (HT).> They
considered a series of points distributed along a line
such that neighboring sites are separated by distances
d, or d, in a random sequence. Relatively sharp in-
terference maxima occur at wave vectors Q such that
Q ~2mm/d;~2mn/d,, with m and n integers, be-
cause a number of nearby sites all contribute nearly in
phase to the scattered amplitude. For example, Fig. 2
shows how the diffraction maxima at Q=6.67/a
(211111) and 28.19/a (100000) along the fivefold
axis arise from the interference between the two pro-
jected distances. HT give a closed-form expression for
the general case of several displacements. If positive
and negative displacements are equally probable, the
scattered intensity per site is proportional to
(1+0)/(1—0C), where C=3,fccos(Qdy), the sum
is taken over all fundamental site separations = d,
and f; is the probability of occurrence of separation

(2|TTT1)—/ /
(100000)

FIG. 2. Three vertex-connected icosahedra, illustrating
the projected displacements along a fivefold axis.
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In fact, along any given direction there are a finite
set of displacement vectors which describe the project-
ed separations of connected icosahedra. The HT
analysis may be trivially generalized to the present
three-dimensional problem by taking

C(Q)=¢3,cos(Q-dy), (1)

where the sum runs over six independent vectors d
pointing to the vertices of one icosahedron. The
resulting function is plotted for Q along the twofold,
threefold, and fivefold axes in the bottom traces of
Figs. 1(b)-1(d). The strong similarity between the
HT model and the numerical simulations shows that
this simple model has captured the essence of the
mechanism of sharp diffraction peak formation in the
simulations. The HT model is similarly successful in
predicting the peak positions for the face-packing con-
figuration.?

Because the icosahedral vertex vectors {d,} are in-
commensurate, there is no value of Q for which all of
the cosines in Eq. (1) are unity. Consequently, each
peak has finite maximum and width, depending on the
degree of phase matching at its wave vector. It is of
interest to compare the widths of the HT model peaks
with the experimental values. Table I shows that the
HT model gives peak widths qualitatively similar to
those experimentally observed, although several times
greater than those from the simulations. An important
difference between the packing method used in the
simulations and the HT model is the inhibition of
overlap in the former, whereas the latter does not in-
clude a similar constraint. Physically, the HT model
loses phase coherence in a smaller distance by allowing
the possibility of going back and forth over the same
neighborhood.” Consequently, the HT model yields a
more disordered structure than the simulations.

We suggest that the general agreement between the
HT model and the experimental peak widths in Table I
is fortuitous, and regard this as an indication that the
icosahedral alloys studied to date are more disordered
than our simulations (e.g., through errors in the atom-
ic formation of the icosahedral clusters). If our
icosahedral glass model is correct, the simulations pro-
vide a lower limit on the experimental peak widths
which might be obtained from more stable icosahedral
alloys, as for instance, Al-Cr or Al-Mn-Si.!!

Dense random-packing structures, introduced by
Bernal,!? form the basis for a group of models that
have been used to describe the structure of metallic
glasses. This concept has been modified to accommo-
date the presence of chemical short-range order, since
it is now largely accepted that the local structure in
these glasses strongly resembles that found in crystal-

line compounds of similar composition. Local
icosahedral order in metallic glasses and liquids has
been discussed recently,!® and is apparently preferred
for sufficiently small cluster sizes. In addition, crystal
structures made up of periodic arrays of icosahedral
units show that this form of packing of metal atoms
can be favorable.!® Here we have discussed a model
for the icosahedral phase which packs these small clus-
ters of atoms according to specific rules which enforce
long-range icosahedral bond-orientational order.
While they are not true Bragg peaks, the resulting
strong interference maxima may be understood on the
basis of a simple analytical (HT) model.
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