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Implications for Optimization by Simulated Annealing
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The zero-temperature ground-state properties of five spin-glass models have been studied as a

function of the cooling rate r = —5T/t Here 5. Tis the temperature decrement and t is the time (in
Monte Carlo steps) at each temperature T. For the 2D + J and Gaussian models, E(r )
= Eo+Clr", where x =0.25, awhile for the 3D + J, a two-layer + J, and infinite-range models,
E(r ) = Eo C2(lnr —) '. We speculate that this difference is related to the fact that the 2D models
are not NP-complete awhile the other three models are.

PACS numbers: 64.60.Cn, 05.50.+ q, 75.10.Hk, 75.50.Kj

In 19S3, Kirkpatrick, Gelatt, and Vecchi' introduced
the concept of optimization by simulated annealing to
search for energy minima of complex systems. They
showed that for systems with many constraints frustra-
tion is important and simple algorithms based on itera-
tive approaches are often not very effective in finding
the lowest-energy state. However, by making an anal-

ogy between statistical mechanics and combinatorial
optimization, they found that by starting at high tem-
perature T and cooling slowly, significant improve-
ment over standard optimization techniques was ob-
tained for a number of problems. By use of a Metrop-
olis criterion' for accepting or rejecting randomly gen-
erated trial states, the N-city traveling salesman prob-
lem, ' the min-cut partitioning problem, ' global wir-

ing, and spin-glass ground states have been studied.
While it is clear that the Monte Carlo (MC) method

will always find the lowest energy given enough com-
puter time, i.e., a slow enough annealing schedule, it is

not known how the final state depends on the actual
annealing schedule chosen. Usually one starts at high

T, where thc relaxation times are short, then lowers T
by a chosen amount b, T (&0) and runs for a fixed
number of MC steps per spin (MCS) t. After a time,
T is lowered, T T+b, T, and one has the choice of
either beginning at the new T with the last configura-
tion or with the configuration with the lowest energy'
from the run. In either case, the final energy depends
on both the size of b T and the number of MC steps t

If the cooling rate r = —AT/t is too rapid, the final
state will have a higher energy than for smaller r.
However, too slow a rate is ~asteful in computer
resources. Since the annealing schedule has remained

the least understoood part of this technique, we have
carried out a detailed analysis of the ground-state prop-
erties for five model spin-glass systems as a function
of the cooling rate. We choose to study spin-glasses
because of their interest both from an optimization
vie~point as well as intrinsically.

Not surprisingly, the value of the ground-state ener-

gy is a sensitive function of r For two. two-dimen-
sional (2D) spin-glass models, the nearest-neighbor
+ J and Gaussian models, E(r) =Eo+C&r ", where

x =0.25, while for the three-dimensional (3D) + J
model, a two-layer + J model, and the infinite-range
model, the dependence is slower, E (r):—Eo
—C2(lnr) '. Here C, and C, are constants. We
speculate that this dependence is related to the fact
that finding Eo for the latter three problems is an in-
tractable problem, ' i.e., it is NP-complete, ' which
means that the amount of computer time needed to
find the true ground state grows faster than any poly-
nomial in N, where N is the number of sites. By con-
trast, the 20 spin-glass models are not NP-complete,
so that Eo can be found in a time which scales as a po-
lynomial7 in N. This difference in the dependence of
Eo on r is not related to the existence or nonexistence
of a nonzero transition temperature ' T, since the
two-layer model has T, =0, yct a logarithmic depen-
dence on r. We think it is clear that an %P-complete
problem should not depend on the cooling rate r as a
power law. If it did, then one could find a solution in a
time which scales as a po~er law in N and thereby
have an inconsistency. However, there may be some
non-NP-complete problems which do not depend on
the cooling rate as a po~er law. The 10 Gaussian
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tion involves considerably more computer time and
because there are no reliable, independent estimates of
the ground-state energy'2 systems larger than 4, the
30 Gaussian spin-glass model was not studied. %e
also studied the infinite-range model in which the sum
in (1) is over all pairs ij and
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FIG. I. Ground-state energy E vs t 't (t in MCS), for
the 2D + J (squares) and Gaussian model (circles) with
AT= —0.1. Solid line through the data is a fit by the form
E(t) = Eo+ Ctt

spin-glass, studied by Ettelaie and Moore, '3 may be
one such example. The only other previous work
along these lines is that of Jackie and Kinzel'4 who
found that the residual entropy for the 20 spin-glass
model was dependent on the cooling rate, but they did
not determine its dependence on r.

The Hamiltonian for the short-range spin-glasses is

0= —X,,J,,s,s, , (I)

where the sum is over all nearest-neighbor pairs and
S;= +1. The probability distributions P(J;, ) chosen
are the Gaussian distribution of width J and mean
Jo ——0 and 5(Jt + J). Because the Gaussian distribu-

In all cases we set J = l. In 2D and for the two-layer
problem, there is no transition" at T, ) 0, while the
3D + J model on the simple cubic lattice has'

T,:—1.175 and the infinite-range model6 9 has

T, =1.0. In 2D, the simulations were performed on a

square lattice of size 100 with periodic boundary con-
ditions. The two-layer model was for a 60X 60X 2 lat-

tice, while in 3D we used a 30 simple lattice. The
infinite-range model was studied for N = 200 and 800.
Standard MC techniques were used for the 2D Gauss-
ian and infinite-range models, while a more efficient
continuous-time algorithm'~ was used for the three
+ J models. This method is more efficient than stand-

ard MC techniques for T & 2.0 in 3D and T & 1.5 in

2D, allowing us to study slower cooling rates. Our
results were averaged over M configurations for each
cooling rate. The standard deviation in the energy was
less than + 0.0010. In all cases, we started our simula-
tions at high enough T; where relaxation is known to
be rapid. We then lowered T at a fixed rate, usually
with 5 T = —0.1. Smaller values of b, T showed no sig-
nificant change in our results. However, much larger
decrements do change the results. Similarly, starting
at higher T, did not change the results significantly
while lowering T; produced higher-energy ground
states. We started at T; =1.5 for the 2D models and
the infinite-range model, 2.0 for the two-layer model,

TABLE I. Ground-state energies for different cooling rates for four short-range models. Here 5 T = —0.1, and M is the
number of configurations [Jt] which were averaged over.

t (MCS)
+ J (2D) Gaussian

M
(2D) Two-layer + J

M E
+ J (3D)

5
10
20
50

100
200
500

1000

Recursive method'

300
300
300
200
120
120
60
32

—1.3472
-1.3608
-1.3689
-1.3763
-1.3801
—1.3833
—1.3863
—1.3974
—1.398

—1.40 + 0.01

150
150
150
90
90
40
16

—1.2313
-1.2468
-1.2590
-1.2687
-1.2766
—1.2812
-1.2867

-1.308

—1.31+0.01

600
360
240
120
120
40
40
28

—1.5511
—1.5666
—1.5790
-1.5903
-1.5970
—1.6010
-1.6053
—1.6067
—1.630

50
50
50
30
21
12

-1.7231
-1.7375
-1

~ 7478
-1.7576
—1.7639
-1

~ 7676
—1.7706

-1.791

—1.76 + 0.02

'Reference 12.
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FIG. 2. Ground-state energy E vs (lnt) ' for the two-

layer + J model (60&&60X2). Inset: The data plotted vs
(
—&/4

and Gaussian models are shown in Fig. 1 as a function
of the cooling time for AT= —0.1. In Table I we

present numerical values for energy E and M. Though
we have plotted the data versus t '~, a good fit is ob-
tained with t ", 0.20&x &0.30. The extrapolated
values for Ez given in Table I agree with those ob-
tained from the recursive method. '

The dependence on cooling rate is much slower for
the other three models. In Figs. 2-4 we show the
ground-state energy E vs (lnt) ' with hT = —0.1 for
the two-layer + J, 3D + l, and infinite-range models,
respectively. The values of the data points are
presented in Table I for the short-range models.

The inset of Fig. 2 shows the results for the two-

layer model plotted versus t tt4, which does not fit
the data. The extrapolated value for the + J model
agrees with that ( —1.78- —1.79) obtained by Ogiel-
ski'6 cooling a 643 lattice very slowly. Note that both
our results and those of Ogielski'6 are lower than the
exact recursive result, Eo= —1.76 for a 43 lattice. '2

Results for Ett for the infinite-range model agree very
well with those determined by use of a slightly modi-
fied deterministic procedure. '7 The result'7 for
N = 800, Eo —0.759——+ 0.004 is plotted in Fig. 4. For
%=200, E= —0.742+0.002. Both of these results
have been rescaled by Wt '/(N —I)tt' to account for

and 2.2 for the 3D + J model. As will be demonstrat-
ed, our MC results all extrapolated to the known
ground-state energy for infinitely slow cooling rates.

Results for the ground-state energy for the 2D + J .760- ~ 746
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FIG. 3. Ground-state energy E vs (lnt) ' for the 30 + J
model ~ith 5 T = —0.1.

1/Int
Ground-state energy E vs (lnt) ' for the

infinite-range model ~ith 5 T = —0.1 for t~o values of N.
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the different definition of P(H) in Eq. (2).
In summary„Fig. 1 graphically illustrates the relia-

bility of traditional MC methods in estimating the
ground-state energies for 2D systems. Figures 2-4
emphasize the difficulties of obtaining good ground
states for NP-complete problems. This difference is
related to the NP-complete problem and not to the ex-
istence of a nonzero transition temperature. Our
results'8 for the X-city traveling salesman problem,
which is also Xp-complete, show that the optimal tour
depends logarithmically on the cooling rate.
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