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Continuum Percolation in an Interacting System: Exact Solution
of the Percus-Yevick Equation for Connectivity in Liquids
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The general role of interparticle interactions is considered for percolation problems in liquids.
With the aid of a diagrammatic formulation of the Percus-Yevick approximation, we analyze the
dependence of connectedness (percolation) on correlation (interaction). This idea is illustrated by
the analytical solution of the Percus-Yevick equation for a model of percolation in liquids, revealing
that excluded volume (for example) may either enhance or suppress percolation.

PACS numbers: 61.20.Gy, 05.20.—y, 71.30.+h, 71.15.Cz

Because one is so often interested in the issue of
connectivity in condensed-matter problems, the con-
cepts of percolation theory"? have found a wide range
of applications. Metal-insulator transitions, cluster
formation, and gelation are just a few examples of the
types of uses to which percolation ideas have been put.
However, while most of theoretical work in the area
has been limited to crystal lattices, much of the experi-
mental interest is in topologically disordered sub-
stances such as amorphous semiconductors or liquids.?
Moreover, in examples such as the metal-insulator
transition in expanded liquid metals,* the problem is
not only a continuum problem but a correlated continu-
um problem—the interparticle interaction affects the
probability of any two particles being connected. Thus
the prototypical situation might be thought of as the
one shown in Fig. 1.

Perhaps the first major contribution to the continu-
um problem, as such, was that of Scher and Zallen,’

FIG. 1. Model of extended spheres: a fluid of molecules
which interact with each other by virtue of their hard cores of
diameter o. Two molecules are assumed to be connected
(capable of transferring electrons, for example) if their
centers are within a distance d of each other. The percola-
tion problem is thus to calculate the minimum density
necessary to have a macroscopic fraction of the particles
connected.
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who suggested (by analogy to the ‘‘dimensional invari-
ants’’ observed with different lattices) that there might
be a certain critical volume fraction regardless of
whether one was dealing with lattice or continuum per-
colation. Indeed, computer simulations seemed to
bear out this idea.® But it was not until the recent
development of formal diagrammatic theories for con-
nectivity, analogous to the Mayer cluster expansion for
correlation, that it became possible to think in any de-
tail about how continuum percolation might differ
from its lattice equivalent and specifically to consider
the significance of the correlations that exist between
the positions of particles in a liquid.”~!° It is the aim of
this Letter to show that the so-called Percus-Yevick
approximation to the summation of the connectivity
diagrams not only allows one to discuss the role of
these correlations but also to solve a reasonably realis-
tic model for percolation in liquids (that of Fig. 1)
analytically.

In the notation of Chiew, Glandt, and Stell.® the
Boltzmann factor for two particles a distance r apart in-
teracting through a potential u (r), e =expl— Bu (r)],
may be written as the sum of Boltzmann factors for
connected, e*=exp[— Bu*(r)], and disconnected, e*
=expl—Bu*(r)], particles. Thus we may also write
the Mayer f function, f=e — 1, as the sum of con-
nected, f*=e* and disconnected, f*=e*—1, parts.
For example, for the extended sphere problem of Fig. 1,

=—1, f=0, =—1, r<o;
=0, fi=1, f*=-1, o<r<d, ¢))
f=0, f'=0, /=0, r>d

Given these definitions it is straightforward to show
that the diagrammatic series for the total pair correla-
tion function (the density-density correlation func-
tion), h(r), can itself be divided into connected and
disconnected parts. The connected part, A*(r), the
conditional probability for finding a particle both a dis-
tance r away from a given tagged particle and connect-
ed to the tagged particle, satisfies the Ornstein-
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Zernike—-type equation
h‘(r12)=c*(l'12)+pfd3r3ct(r13)h*(r32), )

where p is the number density and c* is the direct con-
nectedness function analogous to ¢, the direct correla-
tion function of liquid theory.!!

Equation (2), while exact, is hardly useful as it
stands, but it becomes useful if an approximation such
as the Percus-Yevick (PY) approximation is made for
¢*. Even though this observation has been appreciated
for some time,’~? it nonetheless turns out to be helpful
to reformulate the PY approximation in an explicitly
diagrammatic fashion. The PY approximation for clas-

sical liquids can be defined!! by saying ¢ = fy, where y,
the cavity distribution function, is related to h by
h=(1+f)y —1. On substituting the expression for f
in terms of f* and f*, we derive the PY approximation
for connectedness,

=y + . 3)
This equation, in combination with Eq. (2), the exact
result

R = (1+ )y + 1ty 4)
(which can be taken as a definition of y*), and the
standard methods of diagrammatic liquid theory,!! al-

lows us to give the following diagrammatic formula-
tion of PY theory for connectedness:

y*(r;y) = the sum of all simple diagrams composed of two white 1-circles labeled 1 and 2 (with no

bond between them),

one or more black p-circles,

no articulation circles, and polygons of

/*y bonds with interior decorations of f* bonds that do not cross. (5)

As devotees of liquid theory will recognize, this
series would be precisely the PY form for y (r,) if all
the bonds were f bonds.!? However, Eq. (5), as writ-
ten, not only lets us see the different roles of connect-
ing and disconnecting bonds, but it also lets us see the
effects of correlation: The presence of f*y
= f*(r)y (r) bonds means that the two-body connec-
tivity, f*, is renormalized by the pure interaction part
of the problem. Note that y (r) itself has the physical
meaning of that part of the probability of finding two
particles a distance r apart that is due to the explicitly
many-body effects of the surrounding particles.'* Thus
we might predict that there may be fundamentally
non-mean-field effects on percolation resulting from
interparticle interaction.

We can understand the import of this general state-
ment a little better if we consider the specific example
of extended spheres defined by Eq. (1). Here one is
simply trying to calculate the implications for the per-
colation process of an excluded volume (due to the
finite size, o, of the particles). With the aid of Egs.
(3) and (4), the associated mathematical problem
reduces to the solution of Eq. (2) subject to the condi-
tions

h*(r) =0,
ct(r) =0,

r<o, h(rN=y(), o<r<d,

r>d,

where y (r) is now the Percus-Yevick cavity distribu-
tion function for hard spheres of diameter o. For hard
spheres, however, the definition of A in terms of y
shows that we are just requiring h*(r) =g (r), r < d,
where g(r) is the Percus-Yevick radial distribution
function [A(r)+1] for hard spheres—a quantity
known analytically.!* The end result, somewhat sur-
prising, is that the integral equation can be solved
analytically by what is often called a Baxter factoriza-

tion!> over the range 5+ < o/d < 1. In this interval,'6
the direct connectedness function, c¢*(r), is piecewise
polynomial in r.

In Fig. 2 we have plotted the resulting critical per-
colation density for this problem. This critical density
was calculated from the requirement that the cluster
size, the average number of particles connected to any
given particle,

s=1+pfd3rh‘(r), (6)
diverges,’ a condition equivalent, by virtue of Eq. (2),
to requiring that the Fourier transform of c¢* at zero
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FIG. 2. The critical density for percolation of extended
spheres, p, vs the hard-core diameter, o (both in units of
the connectedness distance d). The solid and dashed lines
correspond to our analytical and numerical Percus-Yevick
results, respectively. The points are from the Monte Carlo
simulation of Ref. 17.
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wave vector satisfy the equation pé*(0)=1. It is in-
teresting to note some limiting cases of these formulas
which have already been discussed in the literature.
As o/d approaches 0, the problem becomes that of
randomly centered spheres®®—continuum percolation
with no interparticle interaction. On the other hand,
as o/d approaches 1, the problem approaches the im-
penetrable (e— 1) limit of permeable spheres’—a
somewhat phenomenological, but nonetheless intrigu-
ing, attempt at including excluded volume. Still, the
portion of Fig. 2 relevant to real liquids is defined by
0< o/d < 1, and it is there we see the most interest-
ing behavior.

In distinct contrast both to the suggestion that the
percolation density ought to be inversely proportional
to excluded volume'® and to the lattice-based notion
that the density ought to be inversely proportional to
coordination number,! we find a strongly nonmono-
tonic dependence on o/d. Independent Monte Carlo
results,!” also shown in Fig. 2, nicely confirm our
result. At large o/d, the dependence is indeed con-
sistent with what one would expect from coordination
number arguments: As o/d increases, the volume
available for two particles to be connected (o <r
< d) decreases, decreasing the average coordination
number and making percolation more difficult. At
smaller o/d, though, we propose that we are seeing
several non-mean-field effects. One of these is a cage
effect!3: the genuinely many-body behavior common
to liquids in which the particles surrounding two sub-
ject particles can hold them in proximity. Indeed,
more detailed diagrammatic analysis shows that the in-
clusion of the hard-sphere cavity distribution function
y(r) in Eq. (5) always makes percolation easier. Even
more important for an understanding of the minimum
in the curve, perhaps, is the fact that, for a given clus-
ter size [as defined by Eq. (6)], the presence of the
hard core also serves to push the particles away from
each other. Thus the physical extent of the clusters
must increase as o/d increases, even if the number of
connected particles remains constant. Hence this ef-
fect will also make the density required to percolate
decrease as o/d increases. In fact, diagrammatically,
the dip in the curve turns out to come solely from the
interior decorations of f* bonds—which represent just
this exclusion of volume around a sphere.®

It should still be emphasized that the Percus-Yevick
approximation is not as accurate for connectedness as
it is for correlation (for reasons which can be under-
stood diagrammatically'®). As illustrated in Fig. 2, the
numerical values for pa'3 become quantitatively accu-
rate only for large o/d.!”!® The basic idea revealed by
the approximation remains, however: Interparticle in-
teraction has noticeable ramifications for percolation in
liquids. At the very least, this finding suggests that
scaling arguments will need to take into account the
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roles of both connectedness and correlation length
scales.!?
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For o/d =0 we calculate pd®=3/7 =0.955, whereas the
series expansion of Hahn and Zwanzig (Ref. 7) gives pd°
=0.669. Of more fundamental interest, though, is the fact
that the PY approximation does not predict hard-sphere
freezing. We (in agreement with Ref. 8) would expect pd®
not to diverge at o/d =1, but, rather, to give percolation at a
density lower than that of random close packing (po?
=1.2).
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