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Deconfining Phase Transition in Lattice QCD
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+e present the first results obtained from the sixteen-processor version of the parallel supercom-

puter being built at Columbia. The color-deconfining phase transition has been studied for pure
SU(3) gauge theory on lattices with a spatial volume of 16 sites and temporal sizes of 10, 12, and

14 sites. The values found for the critical coupling are 6.07, 6.26, and 6.36, respectively. These
results are in agreement with the perturbative predictions of the renormalization group, suggesting
that lattice QCD calculations with the parameter P at least as large as 6.07 may approximate the
continuum limit.

PACS numbers: 12,38.6c

The question of how small the lattice spacing a must
be in order to reproduce continuum physics is present-
ly one of the most important in lattice QCD. In the
continuum limit, the renormalization group predicts
that a, when measured in physical units, decreases in a

known way as the bare coupling g approaches zero. If
one uses the critical temperature T, of the color-
deconfining phase transition to determine the physical
scale, then one can study this question by comparing
the numerically calculated g dependence of the product
T,a with that predicted by the continuum renormaliza-
tion group:

T, a = cPs't t2' exp( —4m 2P/33). (1)

Here p is defined as 6/g2, and c is a constant that is
not determined by perturbation theory.

Although the earliest work' on lattices with two and
four sites in the temporal direction showed a scaling
behavior in agreement with Eq. (I), more recent
results2 on larger lattices are inconsistent with the con-
tinuum perturbation predictions of Eq. (1). In Fig. 1

we show both these earlier results and the values re-
ported in this paper from still larger lattices. The
curve sho~n for comparison has a slope given by Eq.
(I) but a y intercept determined by fitting the constant
c to our three points.

Let us recall the conventional picture of the color-
deconfining phase transition in lattice QCD. The par-
tition function is given by

t

Z =„dUtexp —
2 XRe tr (1—Ut ),

p

where Ut is the element of SU(3) associated with the
link i, and Ut is the product of the links around the
plaquette P. A calculation performed on a N3X N, lat-
tice can be interpreted as representing a system with a
finite volume V= (aN, )3 at a temperature T= 1/

(aN, ). For sufficiently large N, (i.e., at sufficiently
low temperature T) one finds the usual confinement
of color charge. However, as the number of lattice
sites in the time direction is decreased, a critical value
N„=I/aT, is reached below which color charge is no
longer confined. This high-temperature region is

characterized as a gluon plasma phase in which color
charge is screened but not confined. Both phases are
of considerable physical interest: The low-temperature
phase describes the usual QCD vacuum and the high-
temperature phase corresponds to a physical environ-
ment which may be created in the collision of high-

energy nuclei and possibly realized at an early stage in

the evolution of the universe.
These two phases are usually distinguished in Monte

Carlo calculations by examination of the expectation
value of the Polyakov loop operator P(x),

P(x) = tr( U, )/3, (2)

constructed for each spatial coordinate x by taking the
trace of the product of the link variables Ut associated
with the line L of links in the time direction with spa-
tial coordinate x. The operator P(x) is a component
of the color-vector potential [written as a matrix in the
fundamental representation of SU(3)] along the line
L. This operator describes the insertion of a massive
color-triplet source (quark), with world line L, into the
interacting system of gluons. In the low-temperature,
confining phase such an isolated quark will have an in-
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FIG. 1. The product of critical temperature and lattice

spacing plotted as a function of the parameter P = 6/g . The
curve has the slope predicted by continuum perturbation
theory. Its y intercept is fitted to the large-lattice data.
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finite energy so the expectation value of P(x) should
vanish. In contrast, for T ) T„P(x)should have a
nonvanishing expectation value.

In the lattice version of the theory, this phase transi-
tion is related to the breaking of a global Z(3) sym-
metry for which the operator P(x) represents an order
parameter. This symmetry consists of multiplying all

of the timelike links in a single time plane by the same
element z of the center of the gauge group. Under this
transformation P(x) zP(x). This Z(3) symmetry
implies that there should be three possible expectation
values of (P(x) ), related by multiplication by the ele-
ments of Z(3). In fact, it can be argued3 that P(x)
should be simply proportional to the elements of Z(3).
Such a phase transition is expected3 to be first order, a
conclusion supported by the previous numerical
work '2

Use of (P(x)) to distinguish the confined and
deconfined phases in actual calculations poses two dif-
ficulties, which become more severe as we approach
the continuum limit. First, in the limit of large N„the
expectation value of P(x) in the deconfined phase
vanishes exponentially in N, . This is a consequence of
the linear divergence ( —1/a) in the self-energy of a
pointlike color charge.

The second problem arises from the Z(3) symmetry
described above. The integration of P(x) over the
Z(3) transforms of each gauge configuration causes
the expectation value of P(x) to vanish. By analogy
with the Abelian gauge theory, this vanishing of
(P(x)) can be viewed as following from the integrat-
ed form of Gauss's law which forbids a net charge in a
finite volume with periodic boundary conditions.
Thus if one averages over very long Monte Carlo runs
in order to measure the necessarily small quantity
(P(x)), these global changes in phase will occur,
causing (P(x)) to vanish even in the deconfined
phase.

Of course, in the limit of infinite volume a single
isolated charge is no longer inconsistent with Gauss's
law and these changes of phase extending over the en-
tire volume become impossible. To see deconfine-
ment in a finite system, one must limit the length of
the Monte Carlo averages to avoid averaging over
these Z(3) transformations and hence restrict the pre-
cision with which (P(x)) can be determined. This
situation is typical of finite-volume calculations of an
order parameter in a phase with spontaneous sym-
metry breaking.

Now let us turn to the details of our calculation.
Since N, cannot be varied continuously, it is con-
venient to vary N« = I/ T,a by varying the parameter
P. We search for the critical value of P at which N„
equals the value of N, for the lattice on which we are
working. For each of our three values of N„we have
performed runs of 10000 to 20000 sweeps for four or
five values of P in the region of the phase transition.
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FIG. 2. The argument of (P) vs sweep for N, =14 and
P=6.2, 6.3, 6.4, and 6.5. The average is carried out over
the volume for each s~eep.

For each sweep we calculated the real and imaginary
parts of all Polyakov loop operators, and the spacelike
and timelike plaquettes. All four quantities were aver-
aged over the lattice.

For each value of P, we began with all link variables
equal to the identity matrix. The first 1000 sweeps
were then discarded to eliminate effects due to incom-
plete thermalization. Increasing the number of sweeps
discarded had no systematic effect on the mean value
or the fluctuations in any of the quantities which we
calculated.

For temperatures not too close to the transition, the
phase of the system can be easily determined by look-
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ing at the Monte Carlo evolution of the argument of
P(x) averaged over the lattice for a single sweep (see
Fig. 2). Below the transition, the magnitude of (P) is

small and its argument appears to be random, with
large changes in value from sweep to sweep. Above
the transition, the magnitude of (P) is significantly
larger and the argument stays within a band around
one of the cube roots of unity for many hundreds of
sweeps, with relatively quick jumps from one of the
Z(3)-equivalent phases to another. This tunneling
corresponds to the integration over the center of the
group which imposes Gauss's law as discussed above.

Near the phase transition, the jumps between these
bands occur more frequently but take longer to com-
plete, with more time being spent in a region of ambi-
guous phase. Thus at intermediate values of P we see
a mixture of the two limiting types of behavior, corre-
sponding to the existence of the two phases and indi-
cating the first-order nature of the transition. The fi-
nite width of the interval in P (typically 0.2 or 0.3)
over which we see both behaviors reflects the finite-
size rounding that should be expected from a calcula-
tion performed in a relatively small physical volume.

As discussed above, we compute (P) by averaging
over both the spatial volume and blocks of Monte Car-
lo sweeps. We must limit the number of sweeps in a
block so that a spontaneous Z(3) rotation in the
deconfined phase is unlikely to occur. In the limit of
infinite volume, the block size could become arbitrari-
ly large and we would have a proper Monte Carlo aver-
age. For our finite-volume calculation, this procedure
results in a number of independent, but completely
averaged, values of (P) which can be studied. Figure
3 shows scatter plots of the complex values of (P)
computed for the block size of 100 which we have
used.

In order to proceed quantitatively, we must intro-
duce a procedure to define P, which can be applied
even when finite-volume rounding is present. As is
evident from the scatter plot in Fig. 3, the angular dis-
tribution of the blocked quantity (P) provides the
sharpest differentiation between the confined and
deconfined phases. We proceed as follows: For each
value of N, and P, we superimpose the three symme-
trical 120' sectors so that for each of the blocked aver-
ages (P) we obtain an angle $ in the range between
+60' and —60'. The resulting distribution of angles is
shown in the histograms of Fig. 4 for N, = 14.

Below the transition, the distribution is essentially
fiat while above the transition, it has a sharp peak at
/=0. For all three values of N„this peak was con-
tained within a region between +20 and —20'. Thus
if we define the blocks with angles lying outside this
40' region as corresponding entirely to the confined
phase, we can compute the fraction f(P) of our com-
plete sample which is confined. The statistical uncer-
tainty in f(P) can be determined precisely knowing
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FIG. 3. Scatter plots for (P) averaged over blocks of 100
s~eeps.

the number of blocks lying outside the 40' region and
taking into account the autocorrelation in our sample.

A linear interpolation between the values of P which
have f(13) bracketing —,

' gives our critical value of P
with f(P, ) = —,'. This method4 represents a reasonable
(if somewhat arbitrary) definition of the critical cou-
pling strength in the presence of finite-volume round-
ing of the phase transition. It has the virtue of provid-
ing a definite value of P, with well-defined errors
which can be used to extrapolate to the infinite-
volurne limit.

Our results are presented in Table I together with
the predictions of Eq. (1) choosing the constant c to
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TABLE 1. Values for P, with statistical errors and the pre-
dictions of Eq. (1) with c = 67.3 +1.0. This value of c corre-
sp«ds «»,I&L = ~(33/8~')"""=466+0 7
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FIG. 4. Histograms sho~ing the distribution of argu-
ments of (P) averaged over blocks of 100 sweeps, for
%, =14 and P = 6.2, 6.3, 6.4, and 6.5.

give a best fit. We have studied the sensitivity of
these results to our analysis procedure by increasing
the width of the region excluded when calculating

f(P) to + 30' and the block size to 200 sweeps. Both
of these changes increased the errors but gave results
consistent with those in the table. As can be seen, our
results are in very good agreement with the predictions
of the perturbative, continuum renormalization
group. ~

This calculation was carried out on a sixteen-
processor supercomputer designed and built for
lattice-gauge-theory calculations. 6 The processors are

connected in a 4x 4 rectangular mesh, with direct com-
munication provided between nearest-neighbor pairs
of processors. Each processor consists of an Intel
80286 microprocessor, coupled to a high-performance
22-bit floating-point multiplier-accumulator. The time
required to update a link was 180 p, s, using a ten-hit
Metropolis program which reunitarized the link vari-
ables after each sweep.
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