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%e discuss the scattering of mesons of arbitrary spin and isospin from baryons in models in
which the baryon is considered a soliton, or "skyrmion, "

in an effective Lagrangean of mesons.
Model-independent linear relations between partial-wave amplitudes are derived for m N pW and
~W ~W, and, where possible, are compared with experiment.
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The notable success of Skyrme-model calculations
has lent credence to the picture of the nucleon as a sol-
iton, or "skyrmion, " in the nonlinear o. model of
pions. "Of course, if this picture is at all sensible, we

ought to expect that the more realistic the theory of
mesons that we start with, the more accurate our pre-
dictions of baryonic properties will be. In construct-
ing a realistic theory, the most important modification
to consider is the incorporation of additional low-lying
mesons into the effective Lagrangean.

~ork along these lines is just beginning. In the
"to-stabilized" Skyrme model of Adkins and Nappi,
one introduces a coupling co„8" between the co meson
and the topological current of the theory. This cou-
pling, which accounts for the decay co 3~, turns out
to be sufficient to guarantee a stable soliton. Pleasing-

ly, the static properties of the nucleon in this model
constitute an improvement over the unadulterated
Skyrme model. One can likewise construct stable soli-
tons when the Lagrangean includes p mesons, al-

though the static properties of this model are as yet
undetermined. 5 A recent model incorporating ~, p,
and 3

&
mesons seems especially promising. 6

In this paper we give a blueprint for calculating two-

body scattering amplitudes in models in which the
skyrmion is coupled to an arbitrary number of dif-
ferent species of mesons. The processes we will focus
on will be of the type qh8 $8', where $ and p stand
for generic mesons of arbitrary spin, isospin, and pari-

ty, ~ and 8 and 8' denote either a nucleon or a 4. The
treatment will be on a general level; we will not specify
a Lagrangean. Nevertheless, as we shall see, the soli-

ton picture of baryons already implies nontrivial linear
relations between these partial-wave scattering ampli-
tudes, the experimental validity of which can be re-
garded as direct tests of the skyrmion approach to
baryon physics. As a special case, we shall recover the
results for mN n N and mN mb familiar from the
work of Mattis and co-workers, s and Hayashi et al. '

As in these papers, our results will be valid only to
leading order in I/N„where N, is the number of
colors of the underlying strong-interaction gauge
group; the reader is referred to Sect. II of Ref. g for a
discussion of this approximation in the present con-
text.

Our fundamental assumption will be that the effec-
tive meson theory admits a soliton solution which is a
singlet under the simultaneous action I+ J of isospin
and angular momentum. Such is the case in the usual

Skyrme model, where the skyrmion is a "hedgehog"
configuration

Uo = exp[iF(r) r a 1.

This can be thought of as the pion field's having ac-

quired a spatially varying vacuum expectation value

( '(x)) = ,' f F(r)x. . —

In a more general Lagrangean, there is no reason for
the skyrmion to confine itself entirely to the pion field.
For example, in the model of Adkins and Nappi,
(nonpropagating) time component of the to likewise

acquires a vacuum expectation value:

(coo(x)) = G(r), (to, (x)) =0. (3)
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Similarly, in p-stabilized models5 6 the p field is
characterized by

(p[[(x)) =0, (p,'(x)) = eii, xJH(r)/r. (4)

(i',~(x')+;(x)) = X (@(x')IL'M') (LM[@(x))
LML M

Note that Eqs. (3) and (4) also satisfy the fundamental
assumption stated above.

Equations (1)—(4) typify what we shall refer to as a
skyrmion in its canonical (i.e., unrotated) orientation.
Qf course, by isospin invariance, one can construct a
family of degenerate soliton solutions by rotating the
canonical configuration through an angle A E SU(2),
Vlz.

(~ (x)) -e ~'~(A) (f„/2)F(r)x
(p,'(x) ) -~ "'(A).,e~,x,H(r)/r. (5)

In fact, as shown by Adkins, Nappi, and Witten2 and
invoked below, the proper identification of the nu-

cleon and the 5 requires a superposition of the soliton
states corresponding to all such orientations, weighted

by appropriately constructed wave functions X(A ).
Nevertheless, let us forget for the moment about

the existence of these degenerate configurations, and
focus exclusively on the soliton in its canonical orien-
tation. We are thus (temporarily) interested in study-

ing the two-point function (P&Q;)0 representing the
I

simplified process

@U—QU,

where U stands for "unrotated skyrmion. " The upper
and lower indices on the meson fields denote isospin
and spin, respectively; the mesons will be assumed to
be in a representation I~ & of isospin and S& &

of spin.
The subscript 0 on the propagator will remind us that
the skyrmion is in its canonical orientation.

The key to our results is the observation that the
vectorial sum K= S~+ L+ I~ of the meson's angular
momentum and isospin will be conserved in such a
process. (This will no longer be true when we consid-
er scattering, not from unrotated skyrmions, but from
nucleons and/or 5's. ) This conservation law is a direct
consequence of our fundamental assumption. Conse-
quently, the natural thing to do is to expand the meson
field in eigenstates of K2 and K„which we can imag-
ine doing as follows: First, $ and P are expanded in
partial waves ~L,M) and ~L', M'), respectively. Orbi-
tal angular momentum is then added to isospin to
form states ~K,K,) and ~K', K,'), where K=L+I& and
K' = L'+ I&. This hybrid angular momentum is, in
turn, added to the meson's spin to form states ~K,K,)
and

~

K',K,') . The symmetry of the unrotated skyr-
mion then implies K= K' and K, =K,'. We thus have

X (L'Iy IK') (K ILI~) X (K'SHEIK) (K IKSq) Gxxx, LL, (y U y U), (6)
KI/' E EC ECK

where (K~LI~) is shorthand for the Clebsch-Gordan coefficient (KK,LI~~LI~Ma), etc. The Green's function G
is the "reduced" amplitude for the process; apart from its indices, it depends only on energy.

It is easy to generalize this formula to the case when the skyrmion, instead of being in its canonical orientation,
has been rotated through an angle A, as in Eq. (5). By isospin invariance, the two-point function simply becomes

(~,'~;) —(~,'~;), =~ ' (» (~,'~;)o~ ' (A),.
We are finally in a position to consider the physical scattering process PB $8', which requires a superposition of
all values of A. The relevant expression for the two-point function is naturally given by

„t„„,dA x'(A )'(gift, ') „x(A ), (8)

where X(A ) and X'(A ) are the wave functions appropriate to 8 and 8', respectively. The A integration in Eq. (8)
can, in fact, be carried out in closed form, s thanks to the explicit expression for the wave functions"

x;~, (A) = (i/7r) [—,
' (2R + I) ]'/2[6'" ie '" i(A ) ] (9)

and to the identities

' (A)~i, 9' (A)~~= XS' (A)~ ~ +~i(+R R i2~aRc, +ac RiR2) (R,b+d, RiR2(RiRpbd) (10)

and

„dA & ' (A),i,& ' (A),~= [2m /(2Ri+1)]5~, ~,5i 5,q.

To compare with experiment, some further manipulation is in order. We first restrict the incoming and outgoing
mesons to partial ~aves L and L', respectively. The initial and final meson-baryon systems are then projected onto
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states ~I„,I„„J„,J„„St«) and ~1,'«I,'„,J,'«J,'„,S,'«) of definite total isospin, angular momentum, and spin. To-

gether with Eqs. (6) and (10), this projection leaves us with a product of fourteen Clebsch-Gordan coefficients.
Fortuantely, upon summation, our expression simplifies enormously, and we find

X»'G--
KKK

(12)

Here g and g' are group-theoretic coefficients characterizing the entering and exiting channels, respectively; they

are given in terms of 9j symbols by

L lp K

7) = [(2K+1)(2K+1)(2R+1)(2S„,+1)]'/2' S„, R S~ '

J I K

(13a)

and
L' lp K'

q' = [(2K + 1)(2K'+ 1)(2R'+ 1)(2S,'„+1)]' ''S,'„R' S~ '.

J I K
(13b)

As a reassuring check on our formalism, note that
conservation of isospin and angular momentum has
emerged in the Kronecker 5's of Eq. (12).

These expressions generalize the formalism for
n N n N and n N m 4 presented in Refs. 8-10 to
the case when the initial and/or final meson has
nonzero spin. Recall that the comparable expression
for pions involves 6j symbols. Indeed, if one plugs

S& = S& = 0 and I& = I& = 1 into (13), then the 9j sym-
bols collapse into 6j symbols, and we recover the pre-
vious formula.

Equation (12) embodies a neat separation of dynam-
ics and group theory, represented by the G 's and q's,
respectively. To make maximum use of the formula,
one should write down an effective Lagrangean, solve
for the soliton, and'extract the G 's numerically from a
phase-shift analysis. (Such is the approach of Refs. 9
and 10 and in the work of Karliner and Mattis'2 for the
special case of elastic mN scattering in the two- and
three-flavor Skyrme models, respectively. ) This
would enable us to compare theory to experiment for a
wide variety of two-body processes, and would be a
crucial test of the more "realistic" skyrmion models
currently being constructed.

Alternatively, one can derive model-independent rela-
tions by finding those linear combinations of physical
amplitudes for which the right-hand side of (12) pre-
cisely cancels out. These relations for mN mN and
mN m4 were the subject of a detailed analysis in

Ref. &; on the whole, they were surprisingly well

obeyed by the experimental partial-wave amplitudes.
In the remainder of this paper, we shall concentrate on
the model-independent predictions of Eq. (12) for the
processes vr W

poland

miV ~N.
Let us denote the independent amplitudes for

pN by the conventional notation
p2s (LL')» 2~ . When L'=L +2, Eq. (12) can be

Pl (SS)Pl
——

p (ss)1

QO

p, (SD)„ -
P P~{SD)

1 l

p, {os)»
(d)

[890 g

—
p p~(os)

i 660

Zp~( P)~5

FIG. 1. Comparison of experimental isospin-~ ~% p%
amplitudes (left-hand column) with the appropriate multiple
of the experimental isospin-T amplitudes (right-hand

column) to which they should correspond to leading order in
1/, . The indicated resonance masses are derived from
peaks in the partial-wave cross sections (Fig. 4 of Ref. 13).
The energy range is from threshold to 1930 MeV.
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shown to imply a simple proportionality between the isospin- —, and isospin- —, amplitudes in the same partial wave:

P 3(L~L +2)3.2L+1 2 P3(L~L + 2)1.2L+1i P3(L~L 2)3, 2L —1 2 P3 (L~L 2)1, 2L —l.

Note that these are energy-independent relations. In this respect, they go well beyond predictions based on tradi-
tional algebraic coupling schemes such as SU(6), which apply only at resonant energies.

Similarly, for the more complicated case where L = L, Eq. (12) implies that the four independent isospin- —, am-
plitudes can be expressed as linear combinations of the four isospin- —, amplitudes. We find

p, (LL),„,
p, (LL), „„
P3(LL )3,2L-1

P3(LL)3 2L~1

A

Cl
2

4L+2 —Py
—o.5

O' — Py-
p2 ~2p —1

y

Pv
n5 aP 'y8

-'P28

p, (I.L. ), „„
Pyo P3(LL)1,2L —1

2 P3(LL)

w1th~=JL, p=(L+1)1/2, y=(2L —1) / and8=(2L+3) /

Figure 1 illustrates Eqs. (14) and (15) as applied to the experimental partial-wave 7rN pN amplitudes, drawn
from the recent comprehensive analysis by Manley et al. '3 The channels depicted are, unfortunately, the only ones
for which sufficient experimental data are currently available for comparison. One should bear in mind that the
curves do not represent the data directly, but result from a delicate, model-dependent analysis of the mmN final
state. As such, they should not be taken as definitive. '4 Although the shapes of the curves in the left- and right-
hand columns are not in particularly good correspondence, the agreement in the signs of the appreciably coupled
resonances (i.e., whether the curve lies in the upper or lower half of the circle at a resonance energy) is completely
nontrivial. This in itself can be regarded as quite promising —especially when contrasted to the fact that SU(6) (in
both its "unbroken" and "i-broken" versions) makes several incorrect (relative) sign predictions for the reso-
nances shown. '3

Of course, Eq. (12) implies similar model-independent linear relations that are straightforward to derive for such
experimentally accessible processes as mN ph, mN fN, and mN AN. For example, in the latter case, one
can show that

' 1/2
2L —1

u11( L )1,2L —1 011(LL )1,2L +1
2L+3

(o3 ( LL ) 1 2L 1 + ~3(LL )1,2L+1.

When reliable experimental low-energy partial-wave data for such processes become available, they will constitute
further important tests of the skyrmion approach to hadron physics.

I am indebted to Marek Karliner and Michael Peskin for comments on the manuscript. This work was supported
by the U.S. Department of Energy under Contract No. DE-AC03-76SF00515.
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