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Sp&n-Glass on a Bethe Lattice
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The Ising spin-glass in a magnetic field is studied for the Bethe lattice. There is an instability that
agrees with the replica-symmetry-breaking transition found for the infinite-range model. Correla-
tion lengths are finite on both sides of the transition, but there is a correlation length that diverges
at the transition. Some features are different from those of the infinite-range model, and in partic-
ular the magnetic susceptibility and internal energy vary smoothly through the transition. An anal-
ogy with the localization transition on the Bethe lattice is pointed out.

PACS numbers: 75.50, Kj, 75.10.Hk

During the past ten years there have been many
studies of the Sherrington-Kirkpatrick' model of a
spin-glass. In this model each spin interacts with every
other spin in the system, and it was reasonable to sup-
pose that mean-field techniques would provide an ex-
act solution of the model. While Sherrington and
Kirkpatrick did indeed find an exact solution in the
high-temperature (paramagnetic) phase by use of the
"replica trick, "which had been used for the spin-glass
problem by Edwards and Anderson, ' it was clear that
their solution was wrong at low temperatures. Work
by de Almeida and Thouless3 showed that even in

nonzero external magnetic field there was a transition
at which the symmetry between replicas was broken,
and that the failure of the Sherrington-Kirkpatrick
solution at low temperatures was due to the neglect of
replica-symmetry breaking, but no method of con-
structing the low-temperature phase was proposed in
that paper. Parisi found a way constructing a spin-
glass phase with broken symmetry in which the
Edwards-Anderson order parameter q is replaced by a
continuous function q(x) monotonic in the range
0 (x & 1. The meaning of this continuous function
was initially obscure. Sompolinsky' suggested that de-
creasing values of x should correspond to increasing
time scales for a nonequilibrium system. The interpre-
tation that now finds favor is that of De Dominicis and
Young6 and Parisi, ' in which dx/dq is the probability
density for an overlap of magnitude q between dif-
ferent possible equilibrium states of the spin-glass
under given external conditions. There have been
various discussions of the relation between the two ap-
proaches. s Recent work by Mezard et al.9 has taken
the approach of Refs. 6 and 7 further and has shown
that the overlaps have an ultrametric property, so that
out of three equilibrium states the two with most over-
lap have overlaps with the third state that are equal to
one another.

Although the infinite-range model gives interesting
clues about the behavior which might be expected for
a finite-range spin-glass in a space of sufficiently high
dimension, it has some properties that make it quite
unlike a finite-range system. Because all sites are con-

nected equally to one another there is no correlation
length, there are no boundary conditions, and there is
no way in which the limit of an infinite system can be
approached by enlarging a finite system in such a way
that finite neighborhoods are undisturbed. For this
reason it seems valuable to reexamine the Bethe lattice
as another system on which the spin-glass problem
might be solved. It was pointed out by Kurata, Kiku-
chi, and Watari'o that the first Bethe approximation
provides an exact solution of the Ising model on an in-

finite Cayley tree, and Bowman and Levin" have
shown how to obtain the solution for a spin-glass
model, but they only studied the problem in the ab-
sence of a magnetic field. In this paper I examine the
solution of the spin-glass problem on a Bethe lattice
for small magnetic field in the neighborhood of the
critical point. It is found that the transition occurs on
a critical curve in the HT plane which is the same as
that found for the infinite-range model by de Almeida
and Thouless. 3 On either side of this critical curve the
correlation functions fall off exponentially with dis-
tance, but on the curve there is one correlation length
which diverges. There are some features that are dif-
ferent from those of the infinite-range model. Ther-
modynamic averages are smooth on the transition
curve except in zero field, ~hereas there are cusps in
the infinite-range model. The overlap functions
behave quite differently.

There are actually some close analogies between this

problem and the localization of electrons on a Bethe
lattice. ' In the localized regime the self-energy at a
particular site is a unique function of the energy, but
ceases to be so in the extended-states regime. This is
parallel to the behavior of the effective field in this
spin-glass model, which is locally determined in the
paramagnetic phase but not in the spin-glass phase.
Also the average Green's function is analytic at the lo-
calization transition, just as the thermodynamic aver-
ages are smooth at the spin-glass transition.

The Bethe lattice is an infinite regular Cayley tree,
and it can be regarded as the limit of a finite tree if
some care is taken only to consider properties of points
in the interior. Each site is connected to E + 1 neigh-
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~here Jz; is the coupling of the site i to its inner neigh-
bor k, h is the external field, and the sum is over the K
outer neighbors of i. The factor of I/k&T has been ab-
sorbed into all these fields and coupling strengths.
The effective field g is half the logarithm of the quan-
tity x defined by Baxter. The magnetization at the
central site is given by

Mo = tanh h + X,.g, , (2)

where the sum goes over its K +1 neighbors. At high
temperatures (small values of J and h) this equation
defines a convergent iterative process, so that the ef-
fective field, which depends only on those sites that
are further out along a path from the central site
through the site in question, depends primarily on the
coupling strengths of bonds in the same neighborhood,
In the spin-glass phase, ho~ever, the iterative process
is not convergent, but, as was pointed out by Bowman
and Levin, " if random fields are applied at the distant
boundaries it can be used to define a convergent itera-
tive process for the probability distribution of the ef-
fective field at each site. Thus the difference between
the two phases is that in the paramagnetic phase the
effective fields have well-defined values independent
of the boundary conditions if the boundaries are suffi-
ciently distant, while in the spin-glass phase the values
of the effective fields are very sensitive to boundary
conditions, and only a probability distribution can be
determined without reference to boundary conditions.
This sensitivity to boundary conditions can be taken as
another manifestation of replica-symmetry breaking.

This system can be explored in detail where the
fields are small, since a moment expansion can then
be used; the various powers of the effective fields are

bors, ~here E & 1. How this is done for the Ising
model is described by Baxter. ' A central site 0 is de-
fined, and then for each site i one can calculate the ef-
fective field g; it exerts on its neighbor further in to-
wards the central site. This satisfies the equation

g, =tanh ' tanhJ„, tanh h+ XJgJ

averaged over a distribution of values of J. The
method is illustrated here by taking zero external field
and keeping fourth moments in the effective fields,
but the results which are quoted were obtained by
keeping all terms up to second order in the external
field and up to sixth order in the effective fields. To
leading order in these fields Eq. (I) becomes

r 1 3

(,= tanhJt„x (J——,
' tanhJ+sech J~ XJ(J . (3)

It follows from the structure of the iterative process
that effective fields can only be correlated if they lie
on the same path out from the central site, and it is as-
sumed that the JJ are symmetrically distributed about
the origin, and so the effective fields have no odd mo-
ments. By taking powers of Eq. (3) and averaging the
equations over the J the equations

((4) = t [((")+3(K —1)(( )']
are obtained, where

t„=K (tanh "J)

For ti & 1 this has only the trivial solution with the
moments zero, but for ti ) I there is another solution,

(4') = t, -l 1 —t,
2(K —I) t, —t2

It is clear that the relevant thermal variable in this
model is I —ti, and (g2) is linear in this variable
below the critical temperature.

This calculation does not distinguish between how
much of the variance of ( is due to the variation from
sample to sample (or site to site) and how much is due
to the variation at each site for a particular set of
values of J. To find this another set of effective fields

q is calculated for the same sample, but with different
boundary conditions; I refer to this as a second replica.
Multiplication of the equations for the two, possibly
different, effective fields at the same site gives the
equations

((n) =ti((~) —
3 «i —t2)[(4'n) +3(K —I)(g') ((q) l, (g'q) =t2[(('q) +3(K —1)(g') (gg) ].

Comparison of this with Eq. (4) shows that there are two possible solutions, one in which (gq) is equal to (('),
which is what happens in the paramagnetic phase, and the other in which it is different and is equal to zero, which
is what happens in the spin-glass phase in zero external field.

The stability of Eqs. (4) and (7) can be examined by study of the matrix which relates variations of these mo-
ments in one she11 of sites at a given distance from the central site to variations in another she11. Differentiation of
these equations yields the matrix equation

u, = [t, —4(K —I) (t, —t, ) (g') ]u, ——,
' (t, —t, ) uJ, u, =6(K —1)t,(( )u,2+ t,u, ,

~; = —2(K —I ) (t}—t2) ((q) uJ + [ti —2(K —I ) (t, —t, ) ((') ] NJ
——,

' (t, —t, )xJ,

xl =3(K —1)t2(gq) u, +3(K —I)t2(g') wJ + t2X, ,
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~here

This has two irrelevant eigenvalues close to t2, which is of order K . One of the two relevant eigenvalues is the
one associated with fluctuations in (g ), which to first order in (g ) is

)tt = tt —4(K —1)(g').
Above the critical temperature this is t~ and below it is 2 —t&, and so it is always less than unity except at the criti-
cal point. To the same approximation the eigenvalue associated with fluctuations in (gq) is

) 2= tt —2(K —1)(('),
which is unity below the critical temperature. The correlation lengths can be defined as —1jln)t.

A consistent calculation up to sixth order in the effective fields and second order in the external field gives a
more detailed picture of the spin-glass phase. There is always a solution of the generalization of Eqs. (7) and (4)
in which (gq) = (g2), but below the critical point there may be a second solution of the form

lj2
1 2 1 22 3t '(1- t, )

(A) =-2(~')' 4(4')" K(„1)(K+K„2 „)
provided that this gives (t|:q) & (g ) . The condition that this solution exists is, as can be seen by comparison with
Eq. (6),

, K(K+2Kt2 —2 —t2)tt'( (t, —1)'
6(K —1) (1 —t )

(13)

which for large K agrees precisely with the replica-symmetry —breaking transition found by de Almeida and Thou-
less' apart from terms of order K '. The 8X8 matrix equation corresponding to Eq. (8) gives a modification of
Eq. (11) which is

h + (K+2Kt2 —2 —t2)(2((7)) ——,
' ((2)2).

K(( ) 1 —t2
(14)

This is unity on the critical curve (13), and is greater
than unity below it for the paramagnetic solution, but
for the spin-glass solution it is less than unity, so that
the correlation length is finite except on the critical
curve. The equations involving moments of g alone
(single replica moments) have no singularity in
nonzero field, and the associated correlation lengths
are all finite.

The inclusion of moments of order 2n in this calcu-
lation leads to irrelevant eigenvalues close to t„, and
modification of the marginal eigenvalues by an
amount of order (g2" '). Equations (10) and (14)
give the only correlation lengths that diverge in the
critical region, provided that the moments of the dis-
tributions characterize the distributions adequately.

This discussion sho~s that the spin-glass on a Bethe
lattice has a replica-symmetry-breaking transition in
nonzero magnetic field, and that the zero-field transi-
tion is a bicritical point at which the critical curve runs
into the critical point for the Edwards-Anderson tran-
sition. There are, however, features of the model
which are different from those of the Parisi solution of
the infinite-range model. The internal energy and
magnetization depend only on moments of (, and so
thermodynamic properties should behave smoothly

through the transition; in particular, the nonlinear sus-
ceptibility should be smooth except in zero field. De
Dominicis and Kondor' found a massless mode for
the infinite-range model in the spin-glass state, but in
this model the correlation lengths all seem to be finite
except on the transition curve. It also seems, from
preliminary studies, that the overlap probability distri-
butions are roughly Gaussian in this model, whereas
they have sharp features in the Parisi solution.
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