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The density-functional theory of freezing is extended to investigate the crystallization of binary
hard-sphere mixtures. As the ratio of diameters n = a t/a 2 is lowered, the fluid-solid phase diagram
for disordered alloys evolves from a spindle shape (1 & a & 0.94) into an azeotropic diagram
(0.94 & a & 0.92) and finally into a eutectic diagram (0.92 & n & 0.85). Below a=0.85, nearly
complete immiscibility is predicted, in agreement with the empirical Hume-Rothery rule for metal-
lic alloys.

PACS numbers: 64.70.ov, 05.20.—y, 64.75.+I
In a binary substitutional solid solution, atoms of two chemical species are distributed on a common lattice. The

empirical Hume-Rothery rule states that the formation of such disordered metallic alloys is very unlikely if the
atomic sizes differ by more than 15%. In this Letter we apply a recently developed density-functional theory of
freezing to the simplest possible model of a binary alloy, namely a mixture of hard spheres of diameters o.t and
cr2 & o.t. Such binary hard-sphere systems are known to be completely miscible in the fluid phase for all ratios
u = o.t/o. 2, but from purely geometrical considerations we may expect incomplete miscibility in the solid phase
below some critical value of n. The aim of our work is to investigate the dependence of the fluid-solid phase dia-
gram on the ratio n, and to gain a first-principles understanding of the Hume-Rothery rule.

Our starting point is the following exact representation of the Helmholtz free energy density of the solid, f[p],
viewed as a functional of the local one-particle densities of species t, p„(r):

Pf [p] = XJ p„(r) {in[A'„p„(r) ] —1 }—XX„„'d r'J d X(I —X)C„„(r,r', [Xp])p„(r)p„(r'),

where p= (kttT) ' denotes the inverse temperature,
V the total volume, and A, the de Broglie thermal
wavelength of particles of species t. The first and
second terms on the right hand -side of Eq. (1) are the
ideal and interaction parts of the free energy, respec-
tively. The latter term involves the partial direct
correlation functions C„„,integrated over a linear path
in one-particle density space in the manner first intro-
duced by Saam and Ebner4 (see also Evans' for an ex-
haustive review of density-functional techniques) in
their study of classical inhomogeneous systems, and
subsequently applied to the freezing problem by Baus
and Colot. ' Freezing of a pure hard-sphere system
(a t

= oz) has been considered by Haymet6 who used a
closely related approach.

In the first step we locate the minima of the free
energy (1), corresponding to possible, mechanically
stable alloys. This search is greatly simplified by
parametrizing the local densities by a set of Gaussians
centered around a given lattice {R, }:

p„(r) =x„(y„/rr)'~'X, . exp{ —y„(r—R, )'}, (2)

r

where y„determines the width of the peaks and x„
= p„/p (p = X&p&) is the concentration of species v of
mean number density p„. The Gaussian shape (2) is a
reasonable representation of the one-particle density, 7

even for the hightly anharmonic hard-sphere solid, as
sho~n by molecular-dynamics simulations. s The lat-
tice sites {R&} in Eq. (2) are chosen to be those of an
fcc lattice, since the density-functional theory predicts
the equilibrium structure of the pure (a =1) hard-

sphere crystal to be a compact structure. 2 The lattice
constant a is fixed by the condition that 4/a equals
the total number density p of the solid awhile the width
parameters y„will be determined by minimizing of the
free energy of the solid at a given temperature T and
given mean density p„. Choice of the one-particle lo-
cal densities (2) eliminates any consideration of or-
dered solid alloys ~ith atoms occupying we11-defined
sublattices, and hence any possible long-range compo-
sitional order. Ho~ever, this does not mean that eve

are considering completely random alloys; the local
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densities (2) specify only the mean distribution of
atoms of both species on the fce lattice sites, while
short-range order is explicitly taken into account
through the direct correlation functions C„„appearing
in Eq. (1). Since at present little is known about these
functions in the solid phase, we follow the usual pro-
cedure of approximating them by their isotropic fluid
counterparts, ' evaluated at an effective density
chosen such that the position of the main peak in the
total static structure factor of the fluid mixture at the
density coincides with the smallest reciprocal lattice
vector of the fcc lattice, 2m J3/a, at the density of the
solid, the effective fluid and the solid having the same
composition. This prescription has been shown to
yield freezing data for the one-component hard-sphere
system which are in good agreement with the results of
computer simulations. 9 Explicit analytic expressions
for the C„„and for the static structure factor of the
fluid are obtained from the solution of the Percus-
Yevick (PY) equations for hard-sphere mixtures. "
The PY approximation states that the partial direct
(pair) correlation functions vanish outside (inside) the
corresponding excluded-volume radii (o.„+o-„)/2; lt
is known to yield a good description of hard-sphere
tures in the fluid phase when compared to computer
simulations. 3 With the help of these three approxima-
tions, the free energy of the solid relative to that of the
fluid can be worked out explicitly and the minimiza-
tion program can be carried out easily.

Since the temperature scales out for hard spheres,
the excess free energy of the mixture depends only on
the number concentration of, say, the largest species
(x = x2) and of the total packing fraction
=mp~(1 —x)o. 3t+ xa

~2/6. For fixed values of u

t/o2o(1 & u & 0), of x, and of q, the free energy
is then minimized with respect to the widths, y& and

y2. At low densities (g ( 0.50), the free energy exhi-
bits a single minimum corresponding to the fluid phase
(yt =y2=0). Above a bifurcation value of q —0.50,
the mixture becomes bistable„with one minimum cor-
responding to the fluid phase and a second minimum
associated with a mechanically stable solid phase
(yt, yz&0). The latter minimum disappears at densi-
ties sufficiently high for two spheres to touch (i.e.,
when ot2=a/v2). This scenario occurs for all ratios
in the range 1 & u & 0.85, while for still lower values
of u, it becomes increasingly difficult to find a
mechanically stable solid phase. In the range
0.9 & u & 0.85, the free energy exhibits eventually
two minima for nonzero values of y~ and y2 at high
densities; one of the corresponding solid phases is al-
ways metastable. The emergence of a critical size ratio
for the stability of the solid (u = 0.85) yields the clue
for the empirical Hume-Rothery rule.

Once the stable solid phases have been located, we
can take the final step and inquire for possible fluid
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FIG. 1. Fluid-solid phase diagram for a hard-sphere mix-
ture of size ratio o. =0.95 under atmospheric pressure. T is
the freezing ternperture awhile x =x2 is the number concen-
tration of large spheres. Inset: schematic representation of
the concentration dependence of the solid and fluid free
enthalpies at a given pressure and temperature.

(F)-solid (S) coexistence. At a given temperature we
look for solutions of the equilibrium conditions p' '

= p' ~ {equal pressures) and p. „' '=
N, ,'F' (equal chemi-

cal potentials for both species, v=1, 2). These equili-
brium conditions can be expressed explicitly through
relations similar to (1) and are then solved to yield
phase diagrams at constant pressure. In practice we
switch from the free energy density, f, to the free
enthalpy per particle, g= (f+p)/p, eliminate p in
favor of the variables p, T, and x by using the
equation-of-state p=p(p, T,x) for each phase, and
determine the compositions x' ' and x' ' of the coex-
isting phases by a double tangent construction on g
=g(Tp, x). The essential results are summarized in
the following, and are illustrated by the phase dia-
grams under atmospheric pressure in Figs. 1-3.

In the range of size ratios 1 & u & 0.94 we find a
spindle phase diagram (see Fig. 1): The spheres are
miscible in all proportions in both phases, but the con-
centration x of large spheres is always slightly higher in
the solid. The total packing fraction q remains practi-
cally constant along the liquidus and the solidus. Since
u differs little from 1, this is an illustration of Vegard s
empirical rule stating that the lattice constant a is a
linear function of the concentration. "

For 0.94 & u & 0.92 we find an azeotropic phase dia-
gram (Fig. 2). There now exists a range of concentra-
tions where the fluid mixture remains the stable phase
for temperatures below the crystallization point of the
pure phases. Along the liquidus, q(x) exhibits now a
pronounced maximum at the azeotrope.

When 0.92 & u we find a eutectic phase diagram
(Fig. 3). The free enthalpy of the solid becomes con-
cave for intermediate concentrations, signaling a phase
separation in the solid phase. The azeotrope is re-
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FIG. 2. Same as Fig. 1, but for o. =0.93. FIG. 3. Same as Fig. l, but for o. =0.90.

placed by a eutectic point. While the solubility of the
small spheres in the crystal of large spheres remains
quite substantial (about 400/o), the solubility of the
large in the small spheres is very low (below 5'/0).
When the size ratio is lowered towards n = 0.85, it be-
comes impossible to obtain a mechanically stable solid
for a gradually increasing range of intermediate con-
centrations. The solubility of large spheres in the crys-
tal of small ones shrinks to zero, so that the solid
phase separates into a pure crystal of small spheres and
a solid rich in large spheres still containing an appreci-
able fraction (up to about 25%) of small spheres.

Except for this last circumstance, showing that even
for u = 0.85 the small spheres can still be accommodat-
ed in the lattice of larger spheres, with the effect of
reducing the freezing temperature, the whole scenario
is very reminiscent of the experience one has with real
metallic alloys. " The departure from the Hume-
Rothery rule near x =1 can easily be understood by
remembering that the hard-sphere model can only ac-
count for the geometric packing aspects of the solubili-
ty problem and does not take into account the modifi-
cation of the electronic band structure in the alloying
process. The hard-sphere model is, in that respect,
better suited for the study of rare-gas mixtures. Un-
fortunately only few experimental data on the solid
phases of rare-gas mixtures are as yet available. It is
nevertheless encouraging that the experimental study
of the Ar-Ne mixture (n=0.84) reported by Lon-
guet-Higgins and %idom' shows the existence of an
Ar-rich solid phase for Ne concentrations up to 20%,
which is compatible with the hard-sphere results re-
ported here.

A final remark is in order concerning the tempera-
ture scale of the results sho~n in Figs. 1-3. Since the
hard-sphere model does not include the cohesive ef-
fect of interatomic attractions, the coexistence tem-
peratures calculated for p = 1 atm are unphysically low.
This defect is easily remedied by inclusion of a mean-
field-type van der %aals contribution to the equation

of state of the mixture, as has been successfully done
to calculate the melting curve of one-component rare-
gas systems. ' This term leads to physically reasonable
values of the freezing temperature and to richer phase
diagrams which depend sensitively on the pressure and
on the assumed mixing rules for the attractive part of
the interatomic potentials. Detailed results of such a
calculation are in progress and will be published else-
~here.
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