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Skyrmions in the Presence of Vector Mesons
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The nonlinear o. model with the %'ess-Zumino term is extended to the low-lying vector meson
resonances ~, p, and A]. These resonances are treated as chiral gauge multiplets in a minimally
broken SU(2)L 8 SU(2)tt 8 U(1) v gauge model. The bulk properties of hedgehog skyrmions are
investigated. The results indicate a clear improvement over the conventional Skyrme model.
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It is believed that a dynamical description of the
light pseudoscalar mesons in a Skyrme-type scenario'
including the proper ehiral anomalies is equivalent to
QCD at low energy. While the trivial chiral configura-
tions should saturate low-energy theorems, their non-
trivial counterparts should provide, via the soliton
mechanism, the appropriate playground for meson-
baryon dynamics.

The purpose of this Letter is to extend the nonlinear
cr model to the low-lying vector meson resonances
such as the to, p, and A~, in the presence of the non-
Abelian anomlies. 2 3 We will omit the ad hoc Skyrme
term from our discussion, since the topological config-
urations of this model are stabilized by vector-meson
interactions at short distances, a well-known fact in
nuclear physics. The reasons for this preliminary in-
vestigation are manifold. First, we know from the
large-N, limit that QCD reduces to a weakly interact-
ing theory of mesons (and glueballs), not only scalar
but vector as well. Second, it is important to investi-
gate the role of vector mesons on the structure and
stability of baryons and their low-lying resonances.
Their omission at the hadronic scale can hardly be jus-
tified. Third, they should be present in any serious at-
tempt towards an understanding of the NN interaction,
given the phenomenological success of the boson-
exchange models. 4 Finally, it is rather relevant to see
how vector-meson dominance along Sakurai's pre-

I

cepts' fits into a soliton description of baryons.
While the nonlinear a model with the Wess-Zumino

term provides an unambiguous realization of QCD at
low energy based solely on chiral symmetry, the intro-
duction of vector mesons is less straightforward.
There is, however, a good reason to identify these
mesons with gauge multiplets of a minimally broken
SU(2)L 8 SU(2)R 8 U(1) v gauge model. Indeed,
some years ago, Weinberg and Callan et al. have ar-
gued that an effective chiral description with external
spin-1 gauge sources saturate to leading order the
anomalous chiral Ward identities. In the heavy-mass
limit, this argument gives a sizable credit to the
above-mentioned procedure. Recently, there have
been some attempts to incorporate vector mesons into
an effective chiral description based on induced
representations in the coset space of the pion. For fur-
ther details, see Igarashi et al. and Bando et al.

Having said this, we consider to, p, and At as gauge
particles associated to SU(2)L 8 SU(2)z 8 U(1)v
and define

Att' = —(ta" +p" + a")

where to„= igto„, p„=igp„'7', and a„=iga„'7' are the
gauge co, p, and At fields, respectively. For conven-
ience we have chosen the U(1) and SU(2) couplings to
be identical. A minimally broken SU(2)L S SU(2)It
S U(1) v Lagrangean for spin-1 mesons is given by

~~ = (1/Sg )Tr[a at'"+ p pt'"+to cot'"]+ (m2/4g2)Tr[a 2 +p2+to2]

where m is the bare p-meson mass, and the vector and axial-vector field strengths are

p~" = 8"p"—8"p"+ —'[p~, p" ]+—,
' [a",a"],

a&" = t) a" —t)"a"+ ,' [p",a"]+—,
' [a",p"—].

The gauge-invariant nonlinear a. model for spin-0 mesons is

~a= ,' f Tr[Dt'U D„U], —
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(2)

(3a)

(3b)

(3c)
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where U(x) is the usual SU(2) field, and D4 the covariant derivative in the adjoint representation,

D U=a~U+~PU U—~g. (s)

The anomalous contribution due to the Wess-Zumino term has been discussed by Witten and Kaymakcalan, Ra-
jeev, and Schechter. 3 Since SU(2) I S SU(2) it is anomaly free, the gauged Wess-Zumino term in Bardeen's form9
reduces to

iW,', ei"" &Oi„Tr[L„L Lail
48m'

i%,
+ ei'" i'co„„Tr[p (R& —L&)+a (Rii+Lii)+p ap ——, (p —a )U (pii+aii)U]

64m

where N, is the number of colors, and L„and R„are the left and right currents on S3 in the Sugawara form,

L„= U t)„U= —U R~U. (7)

It is clear from the above definitions that (6) vanishes for U =1. There is no topological contribution to (6),
since n5(SU(2)) =0. The pertinent m-cu-p-A, dynamics is described by Eqs. (2), (4), and (6). The baryons cor-
respond to the nontrivial configurations of spin-0 mesons. Their stability is naturally insured by the repulsive char-
acter of the heavy spin-1 mesons at short distances. Thus, we no longer need a Skyrme fourth-order term.

Using the explicit form of the covariant derivative in (4) gives

(8)

~o= —,' f2 Tr[R2]—+—,
' f2 Tr[p„(R„+L )]+—,

' f2 Tr[a„(R„—L„)]—, f„' Tr[a2]—+—,
' f„' Tr[a„Up„U ]

,
' f Tr[p„—Ua„U]+ ,' f„Tr{p„[U—,p„]U )

—,
' f„Tr[a„[U—,a„]U )

——,'if Tr[a„8"m], (9)

requiring proper diagonalization. By suitably redefin-
ing the pion and A i fields such that

a„=a„—i(g' f /m') 8„m, vr = Zm,

where f is the reduced pion decay constant and

(10)

which shows that both the pion and & i fields mix up in
the vacuum through when the p and Ai fields are switched off. They

choose to fix g„by looking at Oi 3m, and obtain
g2/4m —19. Their result constitutes an upper bound
on g since the decay rate of the Oi is p dominated.

To investigate the nontrivial sector (2)—(6), we will
specialize to hedgehog skyrmions. As a result of the
hedgehog symmetry and the intrinsic parity of the vec-
tor mesons, the most general form for the spin-1 fields
1S

Z =f /f —(I+f'g'/m')

we can eliminate the cross term (10). It follows that
the Ai field acquires a "renormalized" mass term ol
the form3

cubi' = ig(u (r )5i'0,

pi = igTaR (r)6aik8lair" k

a"= ig7'[ai(r)5" + a2(r)r'r']5i".

(14a)

(14b)

(14c)

m~ = m/Z. (12)

Although understood, the tilde will be omitted from
now on for convenience. From the renormalized
Lagrangean we have U=exp[i~ rf(r)], (is)

Oi(r), R (r), and ai 2(r) are continuous functions of
r. In terms of (14), and the standard hedgehog config-
uration for the pion field,

~ o, =igpo(sr+9„7r mr)„n+)—. (13) the energy of a hedgehog skyrmion reads

Simple kinematics show3 that g2/4m= f~~ /47r —3.0.
Since the co field in (6) couples directly to the topolog-
ical curreilt, we conclude that g~/4'ir = +g g /167r—6.S, a bit too low compared with the experimental
value of 10—12. Alternatively, one can use a different
U(1) coupling relative to the SU(2) one, and choose
to determine g„empirically by looking to the interac-
tion between two nucleons. Adkins and Nappi' have
recently investigated the 8 = 1 hedgehog configuration

(16)

The E 's are functionals of F,R, a&, and ai 2. They cor-
respond to the various mesonic contributions dis-
cussed above. Their explicit form ~ill be given else-
vrhere. " The functions F,R, ~, and a~ 2 can be deter-
mined by functional minimization of (16). The result-
ing equations are precisely the Euler-Lagrange equa-
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FIG. 2. The vector-meson fields &v(r) and 8 (r) for dif-

ferent parameter sets. The solid lines represent g=g=6,
m& = 1115 MeV; the broken lines g = 6, g = '7.4, and
m~ = 960 MeV; and the dashed-dotted lines g = g = 6,
m& = 1275 MeV. g is the SU(2) coupling constant and g is
the U (1) coupling constant; g = 7.4 corresponds to
g 2'/4m = 10.
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tions. They can be solved by use of the appropriate
boundary conditions on the meson fields which follow
from their character and their behavior under sym-
metry transformations (parity, etc.). The only non-
trivial boundary conditions are F(0) =n and F(~)
=0. They correspond to a skyrmion with unit baryon
number. For f = 93 MeV, g = 6, m = 139 MeV,

l i g i i I s s a a I-0.

FIG. l. (a) Chiral angle F(r) for g=5 (curve 1) and

g = 6 (curve 2). (b) The vector-meson fields for g = 6.
Curve 1 presents the co meson cu(r), curve 2 the p meson
R(r), curve 3 the scalar part of the physical Ai meson
A I (r ), and curve 4 the tensor part of the physical Ai meson
Al (r). The scale on the left-hand side stands for the p
meson, whereas the scale on the right-hand side corresponds
to cu(r), A I (r), and A f (r).

and m = 780 MeV, the numerical solutions to the vari-
ational problem are shown in Fig. 1. In this case
g„=9, mz = 960 MeV, and the hedgehog mass
MH ——847 MeV is considerably smaller than MH
=1425 MeV as originally discussed by Jackson and
Rho. '2 Notice that one has to multiply the hedgehog
mass of 865 MeV of Adkins, Nappi, and Witten'3 by
1.46 for a consistent comparison. Remember that they
fit the nucleon and 5-isobar masses, while we are us-
ing f and gz as input parameters. The mean square
radius is rH=0. 64 fm. The hedgehog parameters are
found to be very stable in the range g —4-6 as shown
in Table I. Finally, notice that the pion-nucleon X
term,

X ~=4m m2f
&

dr r (1 —cosF), (17)

is of the order of 44 MeV for g = 6, in good agreement
with the mean experimental value X,„„,= 50 + 20
MeV. We have also checked the stability of our
results against variations of the U(1) z coupling con-
stant and the mass of the At. The hedgehog mass
turns out to be in the range of 850-900 MeV, and the
isoscalar radius in the order of 0.60-0.65 fm. The only
quantity which is a bit sensitive to g is the pion-
nucleon X term. For gUlt)=7. 47 (i.e., g„/4n =10)

TABLE I. Various meson contributions to the hedgehog mass (MH) and size (rH), as defined in (16), for different values
of the p~~ coupling g. All energies are given in megaelectronvolts.

591
671
748

—29
—66
—155

—92
—156
—228

(kin)
~Alps g (mass)

ojpA

—86
—66
—10

370
364
360

iV, (Mev)

845
848
847

r„(fm)
0.56
0.60
0.64
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and mz = 1275 MeV we find Xiv„= 59 MeV. '3 Figure
2 shows the parameter dependence of the p and co

meson fields R (r) and t0(r), respectively.
The present analysis shows that the spin-1 mesons

yield a considerable decrease in the hedgehog mass, an
effect that will definitely improve the conventional
results of the Skyrme model. A more thorough
analysis of the present work, and further details on the
static properties of baryons in this model will be given
else~here. "
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