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%e propose a stochastic generalization of the multigrid method, which reduces critical slo~ing
down in Monte Carlo computations of lattice field theories. For free fields, critical slowing down is
completely ehminated. For a @4 model, numerical experiments show a factor of =10 reduction,
over a standard heat-bath algorithm, in the work needed to get a given accuracy {error-bar size).

P($„)= lip„+ (A/2) @2+h@„. (lb)

The problem is to generate random configurations @
with probability distribution

dp, ($) = Z 'e H ~ d$.

This is usually done by simulation of a Markov chain
with some transition probability P($ $') that
preserves the measure (2). The goal is to find such a
Markov chain that can be efficiently simulated on a
computer and has a small autocorrelation time ~.

First Ilote tl1at if Pi, . . . , P„are trans1tion probabili-
ties that preserve (2), then so is their product
PiP2 P„. Our methods are products of this form
where the individual transformations Pk are "partial
resamplings. " Suppose that we have a decomposition

PACS numbers: 11.15.Ha, 02.70.+d, 05.50.+q

Monte Carlo calculations of critical phenomena in
statistical mechanics' and of the continuum limit in
quantum field theory2 have been greatly hampered by
critical slowing down: The autocorrelation time r of
the traditional Monte Carlo algorithms grows rapidly as
the critical point is approached. 3 We present here a
new class4 of Monte Carlo methods, called "multigrid
Monte Carlo" (MGMC), that should have shorter au-
tocorrelation times in the critical region. For Gaussian
(free) fields, a rigorous analysis5 shows that critical
slowing down is completely eliminated; the gain in ef-
ficiency over traditional algorithms thus grows without
bound as the critical point is approached. For $
fields, numerical experiments (reported below) show a
gain in efficiency, over a single-site heat-bath algo-
rithm, by a factor of = 1Q. The MGMC idea applies
to many other models, including plane rotators and
U(1) lattice gauge theories.

The MGMC method is a stochastic generalization of
the multigrid (MG) method for solving finite-
difference equations. It is philosophically similar to,
but technically quite different from, the block-spin re-
normalization group. s Consider, for purposes of illus-
tration, a scalar field theory on a periodic L" lattice A

with Hamiltonian

H(y)= — X (@„-@„,)'+ XP(y. ), (»)
(x-x'( =1

~here

P»'(i'») = A. 'alt» + —,
'

A»'alt» + h»'ilt» (4b)

The coefficients in (4) are determined by direct substi-

of the vector space of fields 4=RA as a direct sum
4=% 8 11, so that each field is uniquely written as
$ =

(hatt, m), alt E 'Ir, m C II. The conditional probability
distribution of i' given m is then

dv(ply) =Z(sr) 'e H'& 'dolt,

where we have written H(i', m) for H($). If $
=

(hatt, m) is a random field with distribution dlt, and
tt'=(alt', ~) where P' has the distribution dv( ln),
then tt' also has the distribution dlt, . We emphasize
that this is true whether or not itt' is independent of hatt.

An example is the single-site heat-bath method: The
sites are ordered xi,x2, . . . , xtv (N = IA I

= L ) and Pk
is an independent resampling of @„„—that is, alt

= $„„,

independent of ijt=g„,. The single-site Metropolis

method is similar, but i'' is not independent of hatt.

In MGMC, these single-site resamplings are supple-
mented by certain "collective mode" resamplings. 9

Assume that L is even, and divide the lattice A into
(L/2)d cubical blocks with 2d sites each. These blocks
B» correspond to the sites of a coarser lattice, A„with
L/2 sites on a side. Define the coarse-lattice variables
(fine-lattice block means)

4»=2
xE8

and let m denote some set of complementary variables.
The MGMC method supplements the single-site
resamplings with resamplings of the coarse-lattice field
Q = (ijt» I» & A . These coarse-lattice resamplings are

themselves carried out by the MGMC method, and so
on recursively (see below for details).

The computational efficiency of MGMC rests on the
fact that the "conditional Hamiltonian" H, (i' l sr )
= H(Q, sr), which determines dv in (4), has the form

H, (y l~) = X (y, —q, )'+ XP,'(y, ),
ly —y I=& 3'

(4a)
where
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tution into H; the site-dependent coefficients A»' and
h»' depend on m, but n'=2" 'n and X'= 2 X do not.
Since the coarse-lattice Hamiltonian is of the same
form as the fine-lattice Hamiltonian (except for site-
dependent coefficients), any algorithm capable of
resampling the fine-lattice field @—including MGMC
itself —can also be used to resample the coarse-lattice
field Q. The only difference is that the coarse lattice
has a factor of 2d fewer points, and so the computer
work on the coarse lattice will be a factor of 2" less.

In the MGMC algorithm this idea is carried out re-
cursively at all levels. Let L be, for simplicity, a power
of 2. The MGMC resampling of the Ld lattice consists
of the following operations: First perform mi heat-
bath sweeps on the Ld lattice; then compute the condi-
tional Hamiltonian for the (L/2)d lattice and perform

y MGMC resamplings of this field; then add the result
back to the Ld field and perform m2 heat-bath sweeps
on the L~ lattice. Note that for each heat-bath sweep
on the L4 lattice, the algorithm performs y heat-bath
sweeps on the (L/2)d lattice, y2 sweeps on the (L/4) 4

lattice, and so on. Provided that y & 2~, the total work
for one MGMC cycle is of order L~, independent of the
number of levels i e , it—i.s . only a constant factor
(1 —y2 ") ' more expensive than mi+ m2 heat-bath
sweeps on the finest lattice alone. The most common
cases are y = 1 ("V cycle") and y = 2 ("W cycle" ).
The order of operations is the same as for ordinary
MG7: Just substitute "heat-bath sweep" for "smooth-
lIlg sweep

There is an alternate way of looking at MGMC that
gives additional insight. '0 Let A be a subset of the lat-
tice sites, define the one-dimensional variable

and let n be the complementary variables. To resam-
ple Q is to propose a move $ $+ tX„, compute the
conditional Hamiltonian H„„d(t~$) = H($+ A„),
and choose t with the probability density—exp[ —H„„d(t~@)]. The reader can convince her-
self that MGMC is mathematically equivalent to taking
A to run through single-element subsets, cubes of side
2, cubes of side 4, etc. , in an order that depends on
mi, m2, and y. However„ the work required to per-
form an MGMC cycle in this way is of the order of
L~ logL for y = 1 and L ' for y ~ 2.

For the Gaussian (free field) case P(@„)= m @„/2,
a rigorous analysis shows that critical slowing down is
completely eliminated (for suitably chosen mi and m2
and for y ~2): that is, the autocorrelation time r of
the MGMC method is bounded as m 0 (criticality).
Indeed, the behavior of MGMC for Gaussian fields is
completely governed by the behavior of the corre-
sponding deterministic multigrid method for solving
linear finite-difference equations. More generally,

consider any quadratic Hamiltonian H(@)= —,
' ($,K$)

—(b, $) and any linear stochastic iteration of the form

y(n+ 1) M@(n) + Plb+ T((n) (5)

That is, the matrix M determines the autocorrelation
functions of the Monte Carlo algorithm. Another way
to state this relationship is that the transition probabili-
ty P (@(") @("+") induces on the Fock space
L2(R~, dp, ) an operator I'(M) that is the second
quantization" of the operator M on the "energy Hil-
bert space" (R",K), from which it follows that

II I "(M)
f i II,

( )
——II M" II

Now, to each Monte Carlo algorithm of the form (5)
for generating Gaussian random fields, there corre-
sponds a deterministic algorithm of the form

y(n+ i) My(n) + limb (7)

for solving the linear equation K@=b. For example,
the deterministic analog of the single-site heat-bath
process is the single-site Gauss-Seidel'2 process. (One
way to see this is to imagine what would happen if all
the random numbers ((")were zero. ) For the operator
K = —A+ m2 on a periodic lattice, the spectral radius
of the Gauss-Seidel matrix Mos is approximately'2 1
—constx m, and so the autocorrelation time of the
heat-bath process is of order m, a well-known
result. Similarly, the autocorrelation time of the
MGMC process is determined by the spectral radius of
MMo, the iteration matrix of the corresponding deter-
ministic multigrid method ("Galerkin with piecewise-
constant injection"). A multigrid convergence the-
orem' states that II MMG II &~& ~&

~ const & 1 with a

constant independent of m and L. Hence there is no
critical slowing down. The successive over-relaxation
Monte Carlo method of Adler and Whitmer'4 can also
be analyzed in this way, showing that their optimal cu is
the same as the optimal ~ for ordinary successive
over-relaxation. '

Our numerical experiments on the two-dimensional
theory show that MGMC does not eliminate critical

slowing down for models with a double-well (noncon-
vex) Hamiltonian. Figures 1 and 2 show our results at
a =1, X =0.1, h =0 on a 128x 128 periodic lattice with
mi=m2=1 and y=2 (W cycle). The heat-bath

where M, W, and T are fixed matrices and the g(") are
collections of independent mean-zero Gaussian ran-
dom variables. Methods based on heat-bath resam-
plings (including MGMC) are of this form. Averaging
over the ( variables we find4 5 that the connected
time-autocorrelation function is

(n) (@(n)@ (0)) (@(n)) (y (0))

= (M"K ')
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FIG. 1. Autocorrelation time p(0) as a function of bare
mass squared A. Lower trace is MGMC algorithm; upper
trace is single-site heat-bath algorithm. Error bars are +1
standard deviation. Heat-bath error bars are highly subjec-
tive.

sweeps used the red-black ordering' of the sites. As a
measure of the autocorrelation time we use'

p(0)= X p(t),

where p(r) is the normalized time-autocorrelation
function of the total magnetization g„@„. (This is typ-
ically one of the slowest modes of the system. ) Esti-
mates and error bars for p(0) and the susceptibility X

are computed by standard procedures of statistical
time-series analysis. '6 Each run was 10000 MGMC
iterations (except A = —0.58, which was 30337 itera-
tions), and the first = 20m iterations were discarded
from the analysis. Results from a single-site heat-bath
algorithm (mt = m2 = 1, y = 0) are shown in Fig. 1 for
purposes of comparison, but the error bars are rela-
tively large (and highly subjective) precisely because
the critical slowing down in the heat-bath case is so
severe. " The MGMC algorithm is seen to have an au-
tocorrelation time roughly 20 times smaller than the
heat-bath algorithm. Since each MGMC iteration
takes twice the work of a heat-bath iteration, the gain
in efficiency is a factor of =10. Preliminary runs at
A. = 1.0 show a significant but probably lesser advan-
tage for MGMC. Indeed„heuristic arguments based
on the double-well nature of the $ potential indicate
that the efficiency gain near criticality should approach
a constant factor F(A. ); here F(A. ) is a decreasing
function of h. which approaches +~ as X 0, in ac-
cordance with the absence of critical slowing down for

A

FIG. 2. Susceptibility X as a function of bare mass
squared A. Error bars are +1 standard deviation.

Gaussian MGMC.
There are many variants of the MGMC algorithm.

We have used heat-bath updating, but Metropolis up-

dating could also be used. (The hit size would have to
be adjusted as a function of the level and perhaps also
of the Hamiltonian. ) We have used piecewise-
constant injection for the coarse-grid correction, but
higher-order interpolations (e.g. , piecewise linear)
could also be used, at the expense of some extra com-
plexity (particularly in the non-Gaussian case). We
note that the red-black ordering is particularly well

adapted to vector or parallel processing.
There is a version of MGMC that applies to the

plane-rotator model4; we add a constant angle to each
spin in a 2 block. Numerical experiments with
MGMC on a d = 2 plane rotator are now being con-
ducted by Edwards. 6 Zwanziger has found an MGMC
method for the U(1) lattice gauge theory, 4 but we
have not yet found one for non-Abelian gauge
theories.

We emphasize that the conditional coarse-lattice
Hamiltonian employed in the MGMC method is not
the same as the renormalized Hamiltonian given by a
block-spin renormalization-group (RG) transforma-
tion. The RG transformation computes the marginal,
not the conditional, distribution of the block means—
that is, it integrates over the complementary degrees of
freedom (the vr variables) rather than fixing them.
Unlike our conditional Hamiltonian, the marginal
Hamiltonian cannot be computed in closed form.
Perhaps MGMC could be made more effective if it
could be modified to resemble more closely the RG
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transformation.
A related "collective mode" approach to reducing

critical slowing down was proposed recently by Ba-
trouni er ai. ts: It uses a Langevin equation and a fast
Fourier transform. MGMC provides an alternative
and possibly more efficient way of solving the
Langevin equation. A collective-mode Monte Carlo
algorithm for the Potts models (including Ising) has
been proposed recently by Swendsen 9 since MGMC,
as currently formulated, works only for continuous
spins, the two approaches are complementary. Ideas
somewhat related to MGMC have been proposed by
Schmidt20 and by Chorin. 2'

Details of this work will appear subsequently. 4 6

This work grew out of discussions with Dan Zwan-
ziger, to whom we gratefully record our thanks. The
computations reported here were performed on the
Elxsi 6400 computer at the U.S. Department of Energy
Courant Mathematics and Computing Laboratory; the
computer programs are available from the authors.
This work was supported in part by National Science
Foundation Grants No. DMS-8400955 and No. DMS-
8501953.
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