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Dynamical Meaning of Quantum Adiabatic Phase: The Case of a Noncanonical System
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A dynamical meaning is given for the phase I' recently found in a quantum adiabatic process. A
noncanonical system, specifically a spin system coupled ~ith a proper intrinsic system, is considered
by use of' a path integral in a SU(2) coherent-state representation. It is shown that I appears as an
addition of topological nature to the conventional action function, which leads to a novel form of
the semiclassical quantization rule including the phase I .
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Followtng an early implication in chemical physics, ' a remarkable phenomenon was recently discovered in the

general context of the quantum adiabatic theorem3: During an excursion along a closed loop C in the external

parameter space the adiabatic deformation of the wave function gives an extra phase tn addition to the usual

dynamical phase„

p„(T) = exp[iI „(C)]exp[ —(i/ir) J E„(R,)dt] In (Rr)) .

fhis phase I'„(C ) (which we call the "adiabatic
phase" after Berry3) was shown to reflect a singular
nature of the degeneracy of adiabatic levels. 2 3 Fur-
ther, this phase was shown to be nothing but the
"holonomy" constructed from the vector bundle of
the parametrized wave function, 4 which leads to a con-
nection with the quantized Hall effect. s The non-
Abelian extension of the phase I has also been stud-
ted.

In spite of such remarkable features of the adiabatic
phase in the general context of nonrelativistic quan-
tum mechanics, the work in this area so far has been
mainly concerned with the static aspect only, that is,
the case in which the motion in the external parameter
space is fixed from the outset. Thus it would be highly
desirable to develop a dynamical argument such that
one can deal with the case where the external space it-

self is a dynamical object. In the following we shall

give a simple but nontrivial answer to this problem.
This viewpoint has previously been pursued by Mead
and Truhlar' using the Schrodinger equation. Howev-

er, the argument based on the Schrodinger equation is
of an essentially local nature. So in order to clarify the
nonintegrable nature of the adiabatic phase, we adopt
here the path-integral formulation which provides us
with a global description of quantum mechanics. The
first step in this approach was made earlier for the
case where the external system is described by canoni-
cal variables. In this Letter, as a further step, we con-

I

sider the systems which can be treated by use of so-
called coherent states. Specifically, we consider a spin
interacting with a proper intrinsic system.

Effective action by path integral Conside. r—two in-
teracting systems which are described by variables q
and S which we conventionally call "internal" and
"collective" variables, respectively. The noncanonical
system we consider is a spin system with S given by an
SU (2) Lie algebra ( S;,i = 1, 2, 3 ) with the commuta-
tion relation [S,,SJ]= ie;Ji,Sk We write . the Hamiltoni-
an as H= Ho(S) + h (q, S), where Ho is the collective
Hamiltonian and h is the internal Hamiltonian which
includes the coupling with collective variables. Let us
consider the trace of an evolution operator
IC ( T) = Tr[exp( —tHT/lr) ], which we shall express in
terms of a path integral. For this purpose we adopt the
SU(2) generalized coherent state [SU(2)-CS] as the
basis Hilbert space. s In short, SU(2)-CS is defined as
IZ) = (1+ IZ)2) sexp[ZS+] I0), where 10) = IS S,
= —S) is the initial vector satisfying S IO) =0 with S
the magnitude of the spin and Z a complex coordinate
of the parameter space. The characteristic property for
IZ) is the "partition of unity,

"f IZ) dp, (Z) (ZI =1
with dp (Z) =constx (1+ IZ )2) 2dZ h dZ" the in-
variant measure w'hich becomes a measure of a t~o-
dimensional sphere dp, = const x sin8 d8 h d@ if we use
a stereographic projection Z= tan(8/2)e '~. In this
representation, the trace function is written as

K(T) = X„J ( n(Z )o, Zp )exp( IHT/lr))tt(Zo), Zo) ap(Zo).
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In Eq. (I), one naturally picks up the transition amplitude for the quantum process starting from the initial state of
product form

~ n(Z0), ZO) [—=
~ n(ZD)) x ~ZO) ] and returning to the same state, where

~ n(ZO)) denotes a com-
plete set of the internal system at the variable Z = Zo. Using time discretization together with the partition of uni-
ty, we get the path-integral expression for (I),

K( T) = $„„T„„(C)exp[(i/f ) So(C)],dp, (Z, ). (2)

Here So(C) is the action function for the collective motion along the loop Cin 2 space,

So(C) =
J (Z(t) ~if rl/rlt —HO~Z(t)) dt.

T„„(C)is just the internal transition amplitude„

W

T„„(C)= lim (n(ZO) I, exp[ —(i/f ) h(Zk, Zk t', q)] In(Zp)) [h(Zk, Zk t', q) = (ZklhlZk —]) ]
Pf~ ao k=1

i.e. , the time-ordered product. T„„(C)is also written as T„„(C)= (n(ZO) ~n( T)), where ~n( T)) is a solution of
the following time-dependent Schrodinger equation:

if 8/Bt(n(t)) = h(Z'(t), Z(t);q) (n(t))
with the initial condition

~
n (0) ) =

~ n ( Zo) ) . Here, the time dependence of h enters through a closed loop [ Z ( t ) ]
with a period T.

With the above prescription„we turn to the case of the adiabatic motion of the collective variable Z( t) and use
the adiabatic theorem. This theorem asserts that during the motion along the loop C the state ~n(t)) remains at the
same adiabatic level denoted by ~

n (Z ( t ) ) ) with an adiabatic energy h. „. Thus, T„„(C) becomes

T„„(C)=exp[ —(i/f)„h. „(Z(t))dt](n(ZD) ~n(Z(T))) c,

where

( n ( Zo) ~
n (Z ( T) ) ) c=— lim ( n (Z„) I .( Z, , ) ),

which just gives a finite connection along the loop C. Following the same procedure as in Ref. 7, we finally obtain
f~ T

T„„(C)=exp —(i/f)„', Z„(Z(t))dt exp[iT„(C)],

with

r„(C)=55~-=i(3[(n I d/BZ f n) dZ+ (n )6/BZ'in) dZ'].

where we are concerned with a specific adiabatic level
(and we drop the label n). First, the semiclassical lim-
it of K'tt( T) is obtained with the aid of the method of
stationary phase in the lowest order:

K"(T)—Xexpt(i/f)[S"(C)+fI (C)]I, (6)
P.O.

where gv, indicates the sum over periodic orbits C
which are determined by the extremum condition
5(S'd+tI ) =0.'4 Next, substituting (6) into (5) and
evaluating the integral over T by the method of sta-
tionary phase, we get

K"(E)—Xexp[(i/f) II (E)+iI (C)]
P.O.

Equation (3) gives an expression for the adiabatic phase extended to the case in which the external system is
described by spin variables. " Thus we arrive at the effective path integral associated with the adiabatic change of
the (noncanonical) collective variable Z,

K'"( T) = X„„exp[(i/f ) [S„'d(C) +fI"„(C)]I,dp, (Z, ), (4)

where S„'d [—= So —jk„(Z,)dt] is the adiabatic action
function. 'z From (4) we get the natural explanation
that the phase I „(C) appears as an action of topologi-
cal nature which is to be added to the usual dynamical
action function.

Semiclassical quantization rule. We now addre—ss a
dynamical consequence of the phase I, which is most
directly examined by evaluation of the energy spectra.
The energy spectra are rapidly estimated by the semi-
classical quantization condition which is derived by use
of the effective propagator (4). Consider the Fourier
transform of K""(T),"

(5)
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Here W'd(E) =S'd+ET (action integral) and T(E) is determined by the extremum condition ri/BT(S'd
+ET) =0, which yields the energy surface A,d=A o+ A. =E Since the spin system is known to reduce to a
one-dimensional (generalized) Hamiltonian system, the energy surface suffices to determine one (and only one)
basic periodic orbit C with the basic period T(E). Then g~, turns out to be the contribution from the multiple
traversals of the basic orbit, i.e. , if we put W' —mW' and I —mI' for m-time traversals and sum over m,
K"(E) becomes

K"(E)= X exp[(i/t) m[ W'd(E)+tl (C)]}=exp[iW(E)/t] I 1 —exp[iW(E)/t] }

with W(E) = W (E)+tl (C). From the pole of (7), we get the semiclassical quantization condition explicitly,
fO

iS()(Z'dZ —ZdZ')/(1+ ~Z~ ) =S sinHd0h d@= (n —I /2n )2m, n =integer.

This gives the energy spectra for the motion of the spin system including the effect of I .'6

Simple model calculations He.—re we shall demonstrate the effect of I by the use of the following specific model.
We consider a simplified version of a particle-plus-rotor model which is familiar in the theory of nuclear struc-
ture. This model consists of a rigid rotor representing collective rotations and an internal single-particle Hamil-
tonian

(8)

3

H= H,p+ X (Ik jk)'/(2~i, )
k=1

Here, l„and jl, denote total and single-particle angular momenta in the body-fixed frame and Jrk is a moment of
inertia of the rotor. Specifically we are concerned with an axially symmetric case, ~& =Xq. We make a further sim-

plification for H„, that is we consider only two single-particle levels with quantum numbers (j = —', , j3 ———,', —,
' )

and retain the Coriolis term H„„=—gklkj„/+„as particle-rotor coupling. The reduced Hamiltonian is given by

.—3s,/+, ,
—iss, /~,

H = [S(S+I )/2K] + —,
' [(I/g3) (I/g ) ]S3 +

lt e 3 J6

where e is a single-particle level spacing. 's The adiabatic levels are evaluated as

A. + = —S cos8/f 3 + —,
' [(e+S cosH/g3)'+ (3/+2t) S2 sin2(8) ]'/z,

from which we can see that two levels cross each other
at S= }ef3},8=0 or m. In this model the basic orbit H. We can see improvements due to the inclusion of
is a circle (see Fig. 1) and the adiabatic phase is easily I . In order to demonstrate the effect of I' more clear-
calculated as I + = +7r[1 —(Scos&/~3+e)/bit] with

b, A. = ()l. + —
A. )/2. Then the semiclassical quantiza-

tion condition (8) becomes, for an upper adiabatic lev-
el i+, ScosH+I +/27r =integer. In Fig. 2, the semi- 4

classical eigenvalues are plotted versus the magnitude
of angular momenta S. The eigenvalues calculated
without I are also plotted for comparison, as are the 3
exact ones which are obtained by the diagonalizing of

FIG. 1. A basic orbit (thick linc) in S space &s the inter-
section of the equienergy surface A,d= E and a sphere (thin
line). The cross denotes the level-crossing point S~ = Sq= 0,
53= ~I 3 for the case «0.

F00 120

FIG. 2. Several energy eigenvalues E'=E —[S(S+1)/
2j] + S ( 1/g3 1//f )/2 } plotted vs S for upper adiabatic
levels. Solid lines denote exact values. Dashed and dotted
lines denote semiclassical results ~ith and without V, respec-
tively. The parameters are set as follows:

~
e ~g~

=}~IX=68.1t2, and I.1+3=82.5t2, e= —3.3 MeV. The
arrow indicates the crossing point S, = I ~/31.

IOOS
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FIG. 3. Expectation values (S3) +5 plotted vs S for
eigenstates ~hose eigenvalues are shown in Fig. 2. Solid
lines denote exact results. Dashed and dotted lines denote
semiclassical results with and without I, respectively. The
arrow indicates the crossing point S, = i~g3i.

ly, ~e evaluate the expectation value of 53 versus 5,
Fig. 3. From this figure, we can see that by inclusion
of I, (S3}+ S increases by just one unit as S passes
through the crossing point S, = i~gqi, which is essen-
tial for reproduction of exact results. This feature cor-
responds to the quantum-mechanical consequence that
the mixing ratio of S3 components in energy eigen-
states changes drastically before and after the crossing
point. By considering the effect of I, we can properly
describe this transition within the semiclassical
scheme.

The authors would like to thank Dr. T. Hatsuda and
other members of the nuclear theory group of Kyoto
University for their fruitful discussions. They also
thank Dr. P. Davis for his careful reading of the
manuscript. One of us (S.I.) is indebted to the Japan
Society for the Promotion of Science for financial sup-
port.

iC. A. Mead and D. G. Truhlar, J. Chem, Phys. 70, 2284
(1979);C. A. Mead, Chem. Phys. 49, 23, 33 (1980).

2H. C. Longuet-Higgins, Proc. Roy. Soc. London, Ser. A

344, 147 (1975); A. J. Stone, Proc. Roy. Soc. London, Ser.
A 351, 141 (1976).

3M. V. Berry, Proc. Roy. Soc. London, Ser. A 392, 45
(1984), and J. Phys. A 18„15(1985).

~B. Simon, Phys. Rev. Lett. 51„2167 (1983).
5D. J. Thouless, M. Kohmoto, M. P. Nightingale, and

M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
6F. Wilzcek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
7H. Kuratsuji and S. Iida, Prog. Theor. Phys. 74, 439

(1985), and Phys. Lett. 111A, 220 (1985).
sJ. R. Klauder, J. Math. Phys. 4, 1055, 1058 (1963);

R. Gilmore, Ann. Phys. (N.Y.) 74, 391 (1972).
9H. Kuratsuji and T. Suzuki, J. Math. Phys. 21, 472

(1980);J. R. Klauder, Phys. Rev. D 19, 2349 (1979).
toP. Pechukas, Phys. Rev. 181, 174 (1969).
ttAs was demonstrated by Berry and Stone (see Refs. 2

and 3), the phase 1'„(C) reflects the structure of level cross-
ing occurring in the internal system; 1„(C) yields the
"magnetic flux" emerging from the degenerate point which

is regarded as an "effective Dirac pole" and leads to the
famous topological quantization condition [see P. A. M.
Dirac, Proc. Roy. Soc. London, Ser. A 133, 60 (1931)].
These known facts are easily sho~n to be reproduced for the
present noncanonical system, the detail of which is omitted
here.

&2lt may be formally straightforward to extend the above
formulation to the case of many-dimensional (n ~ 2) col-
lective motions in the generalized phase space for which we

simply apply the more general type coherent state instead of
SU(2)-CS (see Ref. 8).

t3M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971); W. H.
Miller, J. Chem. Phys. 63, 996 (1975).

&4Hamilton's equations of motion are modified by in-

clusion of I in the extremum condition; however, for one-
dimensional cases the periodic orbits are still determined by

p, d
= const.

tsThe more precise form of formula (8) includes the
Maslov indices (see Ref. 13).

t6A formula similar to (8) has been derived by Wilkinson
concerning the Bloch electrons in magnetic field [M. Wilkin-
son, J. Phys. A 17, 3459 (1984)].

t~J. Krumlinde and Z. Szymanski, Ann. Phys. (N.Y.) 79,
201 (1973).

&SAngular momenta in a body-fixed frame satisfy commu-
tation relations [I,,I ] = is&kIk Then, —we relat. e Iwith 5 as
Ii = S), I2= —S2, and I3 S3.


