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Gutzwiller Variational Approximation to the Heavy-Fermion Ground State
of the Periodic Anderson Model
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A variational wave function for the Kondo-lattice limit of the periodic Anderson model is
evaluated with a Gutzwiller approximation. We obtain a characteristic energy from this coherent
wave function of the Kondo form but with a different exponent in the case of finite degeneracy.
The effective mass and charge and spin susceptibilities are evaluated, and only in the case of large
degeneracy and not too small hybridization strength is a heavy-Fermi-liquid state stable against
magnetic order.
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The highly unusual behavior of the heavy-electron
metals' has stimulated attempts to derive this behavior
starting from the periodic Anderson model in the Kon-
do limit. In this Letter we present a variational
method based on a hybridized wave function in which
the doubly occupied f'-electron configurations are pro-
jected out. To treat the projection operators we use an
extension of Gutzwiller's method. 2 This results in an
effective one-electron Hamiltonian to describe the
low-energy quasiparticle states in which the hybridiza-
tion matrix element is renormalized and the f level
shifted in energy. We obtain from our coherent wave
function a characteristic energy which has a Kondo
form and whose exponent agrees with that of the
single-site Kondo problem in the limit of large orbital
degeneracy. Our method resembles that of Brandow
who obtained an effective Hamiltonian from a di-
agrammatic technique. Functional integration tech-
niques have also led to a similar effective Hamiltoni-
an. On phenomenological grounds Razafimandimby,

Fulder, and Keller proposed a similar model. Our
results differ significantly from these authors. We find
that a paramagnetic heavy Fermi-liquid state is stable
only if the orbital degeneracy is relatively large and the
bare hybridization matrix element is not too weak.
The renormalizations have simple physical interpreta-
tions and are determined self-consistently by a varia-
tional method which can be generalized to more realis-
tic models. Further, our results show that there is
close analogy to the single-band almost-localized
models proposed for He 7 and these systems. 8

The analogy to He has been proposed previously on
genera1 grounds. Lastly we should mention a previ-
ous approach using Gutzwiller methods by Varma. '
He reported on the basis of numerical calculations that
the ground state in this limit had nonintegral valence.
Our analytic results show a Kondo form for the devia-
tion from integral valence. We give explicit results for
the effective mass and charge and spin susceptibilities.

The periodic Anderson-model Hamiltonian is

HA ~ekckacka + X ~kl (ck(rfkto +fklcrcka ) + Ef X nito + U X nilcrn;t'
ko kl a. il g I

1 o-el'cr'

The conduction-band dispersion e (k) is chosen as
linear ranging from —1 to +1. In the Kondo limit,
the bare f'-level energy E& & 0 and the on-site
Coulomb repulsion U is large ( U ~). The hybridi-
zation matrix element is Vkt (chosen as k independent
for simplicity) and the degeneracy of the f level, Xf, is
assumed to be even, N& ——2L. The total number of
electrons, n, is taken as 1 ( n ( 2.

In the single-site Kondo problem a variational wave
function" which mixes the states with the f' level oc-

cupied and a hole in the conduction band with each
other through a state with the f level empty and the
conduction band filled was used to treat the spectro-
scopic response. ' An extension to the lattice problem
was proposed by Brandow with the wave function
written as a projection operator to remove doubly oc-
cupied sites operating on a one-electron hybridized-
band wave function. The key problem is how to treat
the projection operator. Brandow used a diagrammat-

Qc 1985 The American Physical Society



VOLUME SS, NUMBER 9 26 AVCUST 198S

function isic technique to derive an effective Hamiltonian. Here
we use an extension of the Gutzwiller technique with
important differences from his result. In the Gutzwill-
er a roximation for a sin le-band Hubbard model the
effe
erg
cal

T
pro
ele
Ple

pp g
ct of correlations is to renormalize the kinetic en- where I+o) is a one-electron hybridized-band wave

y by a factor, q, calculated from the classical statisti- function and I' and P„are the projection operators

weighting factors (see Vollhardt ). which remove double occupancy and fix the number
o extend the method to a two-band model we of f'electrons. The operator P is treated by renormal-
ceed in two steps. First, we fix the number of f' izing all hopping processes by a factor q(nf, L). In Eq.
ctrons, nf, and then we project out the doubly occu- (1), a hopping process involves two factors of V, and
d states keeping nf fixed. The variational wave so Vis renormalized by a factor q' . The result is an

effective Hamiltonian for a fixed nf,

err( f) = gk~[ k k~ k~+ ~, Vkl~(ck~fkl~+ f «laic«~) + ~lEyfkl~fkl~], (3)

with Vkl~ ——ql~~ (nf, L) Vkl. In this U ~ limit, q is
simply given by the ratio of occupation number factors
for the correlated and uncorrelated wave functions. In
the correlated wave function an f'electron with quan-
tum numbers la- can hop onto another site only if it
has no f'electrons, while in an uncorrelated wave func-
tion the only requirement is that it does not have an
I o- electron. The result is

q, (nf, L) = (1 —nf)/(I —
nfl ),

where nfi is density of la- electrons. Note that be-
cause of the denominator this renormalization factor is
different from that obtained by Brandow and others,
cxccpt as L oo when HfI 2 I 0. The denomi-
nator can be justified in several ways. First, in a corn-
pletely spin-polarized state with I, = 1, q = 1 as it
should, since this limit is a one-electron problem. A
second way is to take the ratio of the kinetic energy of
a small number of holes in the lower Hubbard band as

U ~ to the kinetic energy of the uncorrelated prob-
lem. Using the exact results of Brinkman and Rice'
we can verify Eq. (4) to 10%—20%.

The density nf, is to be determined by minimizing
thc cxpcctatlon value of H e(rrny). Instead of flxtng nf
it is more convenient to go over to the equivalent of a
grand canonical ensemble and introduce an f-electron
chemical potential p, (or self-energy tu, ), leading to
an effective Harniltonian

jeff Heff X P'rrf kl rrf kl a ~

kl a-

~here we have restricted ourselves to the oribtal
paramagnetic case (i.e. , all orbitals occupied equally).
With the assumption that V& is l independent, E,ff can
be diagonalized at once. Only the symmetric combina-
tion of the f levels hybridizes, and the other L —1 or-
bital combinations are unhybridized. The hybridized

I bands have an energy

4+, = t&k+~y lM
+ ~( k

—Ef+tu )'+4LV' j'~'l

The + ( —) label refers to the upper (lower) hybri-
dized band. We should point out that the assumption
that Vk &

is a constant is too simple since in this case l
is not conserved in the hopping process and only the
symmetric combination of orbitals is hybridized and
effectively L = 1. In fact, there is conservation of an-
gular momentum around the axis in a hopping pro-
cess'4 '~ and this requires that the orbital combination
that hybridizes is essentially k dependent. The form
(4) for q assumes I conservation in hopping processes
and so is consistent with the latter. However, in calcu-
lating the energy we will simplify and replace

~ V„, ~ by
an average value.

We consider first a paramagnetic state. The hybri-
dized quasiparticle bands are shown in Fig. 1. In the
special case n = 2, the lower ( —) band is completely
filled and the system is insulating. When 1 ( n ( 2
the lower band is partially filled up to a Fermi wave
vector k F and the system is metallic. The total

pEe f
L

kF

Wavevector

FIG. 1. The energy level structure for the case of' I de-
generate bands and value of n = 1.8. Only the symmetric
combination of f' levels hybridizes with the conduction band
(see text). All flevels are moved up to by a'n energy ( —p, )
so that the number of f electrons is nf which has a value
ng & 1.
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number of f electrons is given by

2[(~k —Ey+ p, ) +4LV ]'

where N is total number of sites and the energy per site is

X '(Hrr) =W ' $ (k + Xp
k&kF cr cr

where &p= 6kF (see Fig. 1). Minimizing with respect to n& gives
1 —(2I. —1)(.,—Z, —1)

1 —nf =
2L V

t

eo(2L —1)
2L2 P2

exp

In the weak hybridization limit, it suffices to work to leading logarithmic order. Then the energy can be evaluat-
ed as a function of nf and by use of Eq. (7), to eliminate p, , we get

N ' (H, rr(nf ) ) = eo/2+ (E~ —eo) nf + nf /2 ——,
' —L V ln [nf (1+eo —nf )/L V ], (9)

(Eo+ Ef + p, )
No= 2

qL V2

2

qLV
(12)

Since it involves q, as expected, and also the ratio
of the conduction bandwidth to the hybridization ener-
gy, it can be very large. The denominator corresponds
to an effective Fermi temperature or Kondo tempera-
ture which is the characteristic energy of the system.

Next we consider the charge susceptibility, X, . A
change in the total number of electrons in this prob-
lem is just a change in the filling parameter eo. If we

This optimum value has an exponential form similar
to that in the single-site Kondo problem. In leading
logarithmic accuracy onLy the exponent can be com-
pared. For L = 1, the exponent is a factor of 2 smaller
than the single-site Kondo exponent, while as L
it agrees.

The condensation energy, F.„defined as the energy
difference per site between the hybridized and unhy-
bridized problems in the leading logarithmic accuracy
1S

E, = [(1+Ef—eo)/(2L —1) ——,
' ](1—n~) . (11)

Note that E,~ (1 —nf) Howev. er, the characteristic
energy to be compared to the Kondo temperature will
be proportional to 1 —nf, just as in a superconductor
the characteristic energy is the energy gap and not the
condensation energy per site.

The specific heat is given by the density of quasipar-
ticle states which from Eq. (6) is

X, = 1 and F'o = 2/qL V . (13)

This result emphasizes the many-body character of the
mass enhancement and the strong residual interactions
between the quasiparticles tending to suppress s-wave
superconductivity.

Lastly, we turn to the magnetic susceptibility, X, . In
the single-site problem a j-coupling scheme may be ap-
propriate and has been widely used, ' ' but in the
periodic lattice problem it is not so obvious that the
bands should be simply described in this manner.
Therefore, we will use simply a constant g factor and
neglect any orbital magnetic moment. The inverse of
the spin susceptibility is given by the second derivative
of the energy with respect to the magnetization, m.
Taking the first derivative of the energy given by the
expectation value of Eq. (3) we get that the magnetic
field corresponding to a given value of m is

calculate the second derivative of the total energy with
respect to &0, the leading term comes from the change
in the unhybridized term in Eq. (9), and the correction
from the change in the condensation energy is sma11 in
the Kondo limit. In other words, when we make a
change in the total electron density the number of f
electrons will hardly change, 1 —nf will remain small,
and the hybridized quasiparticle bands will ride with
the change in filling factor. As a result the parameter

Fo must be very large since it must cancel the large
effective-mass term in Eq. (12) to give a charge sus-
ceptibility of the conduction band,

(H„,) = —,
'

[ m ——,
' (p l

—
p t ) ——, [ (e + m —Ef + p t ) '+ 4L V ~) ] '~'

+ —,
' [(eo —m —E~+ p, l ) + 4L V t

]'~ ].

Note that although V has an important m dependence through qo it gives no contribution since (Huff) is sta-
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tionary with respect to nf and p, . However, it enters the second derivative leading to the result

1 2 Pt 2qLV
X, No Bm 2L —1 t)m

The term which includes the derivatives of p, and nf determines another Landau parameter, Fo. By differentiating
the minimization conditions for p,

&
and nf &, we obtain for the Wilson ratio in the Kondo limit

xs

—,%0

4L —3

(2L —1)'
2L

1
~0

(2L —2)2 qL V

First, we note that for L = 1, X, ( 0 always. Therefore
the energy decreases with increasing I, i.e. , the
paramagnetic state is unstable towards a magnetic or-
dering. Our treatment is only for uniform magnetic
states and the actual magnetic order will be determined
by the detailed structure of the conduction-band,
Ruderman-Kittel-Kasuya- Yosida interaction. For
L = I, the paramagnetic state is stable only in other
limits such as in the limit of a small nf or in an ex-
treme mixed-valence regime. However, when L is
large the paramagnetic state can be stable (X, ) 0)
even in the Kondo regime. The condition is
2L ~ (eo —Ef —I )/L V, where we have used Eq. (10)
to rewrite the logarithmic term in Eq. (15). The quan-
tity eo —Ef —1 is the depth of the bare f level from the
Fermi energy, and —,mL V is the width of the virtual
level in the single-site problem. This ratio governs the
crossover between Kondo and mixed-valence regimes.
This result that orbital degeneracy is essential to stabi-
lize the paramagnetic state agrees with the conclusions
of Coleman, ' Read, Newns, and Doniach, " and Ya-
mada, Yosida, and Hanzawa. ' Note, however, that
our model is still too simple to give us a reliable cri-
terion for real systems.

In this Letter we presented a variational approach to
the periodic Anderson model in the Kondo limit. Sig-
nificant intersite interaction effects are found and our
results agree with single-site Kondo results only in the
limit of large orbital degeneracy of the f level. A
paramagnetic heavy Fermi-liquid state is stable only in
this limit and for not too weak hybridization otherwise,
and in particular for a doubly degenerate f level, a
magnetic state is favored. The heavy Fermi-liquid
state can be viewed as an almost localized Fermi liquid
in which the deviation from integral valence is very
small. He, on the other hand, has been succesfully
described by the almost localized Fermi-liquid model
by use of the limit of integral valence but with a small
number of doubly occupied and empty sites. This
makes clear the origin of the analogy between the two
systems which has been proposed previously9 on intui-
tive grounds. Note that in both systems there are
similar strong interactions between the quasiparticles.
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