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Cyclotron-resonance experiments on conduction electrons in InSb are performed in crossed mag-
netic and electric fields with use of a metal-oxide —semiconductor structure. The data are success-
fully described on the basis of a three-level k p band model. The electron behavior in crossed
fields is interpreted as a spectacular example of an analogy between electrons in narrow-gap semi-
conductors and relativistic electrons in vacuum.

PACS numbers: 76.40.+b, 03.30.+p, 73.40.Qv

It was shown some time ago that semiconductor
electrons in the presence of crossed magnetic and elec-
tric fields offer interesting physical possibilities. ' The
crossed-field configuration is fundamental for classical
and quantum transport phenomena in solids and it has
attracted a renewed interest in connection with the
discovery of the quantum Hall effect. 2 It has been
predicted theoretically that in narrow-gap semi-
conductors the crossed-field case could serve as an ex-
ample of a "semirelativistic" electron behavior,
governed by the energy-momentum relation analogous
to that for free electrons in vacuum.

However, the experimental work with the use of
crossed fields has been limited to germanium, which is
not a narrow-gap semiconductor, and to interband
magneto-optical experiments, whose interpretation has
been obscured by the degenerate character of the
valence band in this material. Only recently has it be-
come possible to apply high electric fields to narrow-
gap semiconductors in crossed-field configuration, be-
cause of improved technology of metal-oxide semicon-
ductor (MOS) structures. An additional important
feature, which has made possible a clear interpretation
of intraband cyclotron resonance experiments in the
Voigt configuration, is the absence of the plasma shift
for the electron gas in this structure. 6

Here we report cyclotron-resonance (CR) experi-
ments performed on InSb in crossed magnetic and
electric fields, their theoretical description based on
the three-level k p model, and finally their physical
interpretation in terms of the semirelativistic analogy.

Our experiments have been carried out on Ge-doped
(N„=10'4 cm 3) InSb(111) platelets with Si02 gate
insulators and semitransparent NiCr gates. The mag-
netic field was directed parallel to the interface. The
change of transmission b T due to the inversion elec-
trons has been measured at fixed laser energies A~ and
inversion electron densities n, in a sweep of the mag-
netic field. The far-infrared light has been incident
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FIG. 1. Cyclotron-resonance spectra of inversion elec-
trons vs magnetic field parallel to the inversion layer at a
fixed laser energy tee (crossed-field configuration, see in-
set). Spectra are shown for various electron densities n, .

perpendicular to the interface and to the magnetic field
(Voigt configuration) and it was polarized perpendicu-
larly to the magnetic field (see inset in Fig. 1). Thus
cyclotron-resonance transitions5 could be induced.

Examples of transmission spectra, taken for one
laser energy and different surface-electron densities n,
(or electric fields), are shown in Fig. 1. Clear observa-
tion of cyclotron resonance for the light polarization
parallel to the interface indicates that we deal with
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electrons away from the barrier, i.e. , with those pos-
sessing essentially three-dimensional character. " As
the electric field increases the cyclotron-resonance po-
sition shifts to higher magnetic fields and finally the
line disappears. This indicates that nonparabolic ef-
fects in the conduction band of InSb come strongly
lrlto play.

To treat the problem theoretically we consider the
electron in a periodic potential Vo(r) in the presence
of an external magnetic field 0 and a constant electric
field E,

tk„+ (1 —5 )'i +esD(— (3)

where

potential well any more, i.e. , no magnetic quantization.
In other words, a sufficiently strong transverse electric
field destroys the Landau levels. "

The quantized levels in crossed fields (for 5 ( 1)
are derived from Eq. (2) by completing the square and
carrying out the harmonic oscillator quantization. For
k, =0 we obtain

[(I/2m )P + V +eE r+H, , ]+=a+,
D '- =&~, (1 —&') "'(I + —,

' ) + ,' g,' p, ,—H. (4)
where P= p+ (e/c)A in the standard notation and
H, , is the spin-orbit interaction. We look for solu-
tions in the form W=gf„(r)u„(r) where f„are en-
velope functions, u„are the Luttinger-Kohn periodic
functions at k =0, and the index n runs over the
bands.

Considering a narrow-gap semiconductor of the InSb
type we take into account three levels at k =0: a I 6
conduction level separated from a I 8 valence level by
the gap energy eg, this in turn separated from a I 7

valence level by the spin-orbit energy 4. We neglect
the free-electron term as it gives only a small contribu-
tion to the effective mass, and we assume 4 » eg,
which is approximately the case in InSb. The choice
E= (O, E, O) and A= ( —Hy, 0, 0) allows us to separate
the variables: f„'(r) = exp(ik„x+ik, z )@„(y). The fi-
nal effective equation for the envelope functions
@+ (y ) related to the 5-like conduction level is

~y+ ~ rry @+=l +P+, (2)
2mo 2

where co,rr ——(0, —2e E /mo 6&, cl'=A(0 k —2eEe/e~,
and
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For E = 0 Eqs. (3) and (4) reduce to the well-known
formulas for Landau levels in narrow-gap materials. '

Figure 2 shows experimental and theoretical results
for the cyclotron mass, defined as m'= efH/
(e(+, —e(+)c. Experimental errors for the mass m

and the density n, are Am & 2x10 "mo and n, = 0.1
X 10" cm, respectively. Solid lines are calculated
from Eq. (3) for i = 0+ to l = 1+ transitions. The
momentum tk„ is conserved in a cyclotron-resonance
transition.

The points corresponding to the lowest line (E = 0)
have been measured on a bulk InSb sample with
n =6&&10' cm, in which only 0+ 1+ transitions
are possible. For the E =0 case one can use a model

t k~——
~g + o pBH+ 4 g 2mo

f k,

2mo

0.65~10

0.0200—

Here cu, = eH/moc is the cyclotron frequency, and mo
and go are the effective mass and the spin-splitting
factor at the band edge, respectively. To arrive at Eq.
(2) we have neglected a term resulting from the non-
commutation of P~ and eEy operators. This term is
responsible for the Zener tunneling between the
bands and it is of no importance for the electron ener-
gies as long as the energy gap is not very small. '

Equation (2) is similar to the eigenvalue problem
for the harmonic oscillator with an effective frequency
~„r= ~, ( I —n') '", where n' = (cF/H ) '(e, /2m o )
The term oy determines the position of the quadratic
potential well, while hen, ff determines the quantization
energy and the character of motion. For cu, ff & 0 one
deals with quantized levels. As the electric term in
QJ ff becomes larger than the magnetic one there is no
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FIG. 2. Electron cyclotron masses in InSb in crossed elec-
tric and magnetic fields for two inversion-electron densities
n„ i.e. , electric field strengths E. Volume masses of n-type
InSb (E =0) are included for comparison. Solid lines are
calculated. A steep increase of the observed and calculated
values at low magnetic fields for E&0 is caused by the
semirelativistic enhancement of the mass, as the drift veloci-
ty in crossed fields becomes comparable to the maximum
velocity possible in the conduction band.
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with final 4 value. ' The data are then very well
described with the realistic InSb parameters: vl p

= 00136pl p, gp = 513, eg = 0236 eV, and 5 = 081
eV. However, since for the crossed fields we use a
somewhat simplified model (which assumes large b, ),
we use the same scheme for E = 0. This requires a
slight modification of the gap value to eg =0.250 eV.
The solid line for E = 0 has been calculated under this
proceduI e.

The E~0 points have been measured on the MOS
structure described above. In their description we use
Eqs. (3) and (4) with the same band parameters (i.e. ,
eg =0.250 eV). Since we assume the electric field to
be constant, which is not the case in a real MOS struc-
ture, the effective field intensities indicated in Fig. 2
have been treated as an adjustable parameter. For the
electron densities shown in Fig. 2 the fields are found
to be a factor of about 3 less than the fields just inside
the semiconductor: The three-dimensional electrons
away from the barrier feel an electric field that is
screened by the electrons closer to the interface. A
similar screening factor has previously been reported
for space-charge layers on HgCdTe. ' It can be seen
that the ratio of adjusted field intensities corresponds
to the measured ratio of the surface electron densities
for the two cases shown in Fig. 2. The two curves
E&0 can be interpreted in the following way. At high
magnetic fields the electric field term in co,«- is unim-
portant and the mass increase is similar to the E = 0
case. As the magnetic field decreases, however, the
electric term in eu, ff becomes important: ~,ff & cv„and
the mass measured by the cyclotron resonance in-
creases. This is in sharp contrast to the E = 0 case.

The inhomogeneity of the electric field seems to be
responsible for the appearance of the second peak at
higher electric fields seen in Fig. 1, which we interpret
as I = 1 to I = 2 CR transition. Real behavior of the
electric potential in a MOS structure is sublinear, so
that higher magnetic states are subjected to a weaker
electric field, which qualitatively agrees with the obser-
vations. Disappearance of the CR peak in Fig. 1 corre-
sponds to the condition ~,elf=0, if the scattering is
neglected, or, more realistically, to the condition
~,ffr & 1, where ~ is the electron relaxation time.

The increase of the cyclotron mass with increasing
electric field and the disappearance of cyclotron reso-
nance are spectacular manifestations of the semirela-
tivistic behavior of conduction electrons in InSb. In
the absence of external fields the dispersion relation
for two interacting bands is given by the simplified
Kane' formula

e= [( /2)'+ p'/2mo j'~'.

It has the form of the relativistic relation for electrons
in vacuum, with 2mpc replaced by eg and vip by D1p.
A maximum velocity u in the two-band model can

easily be deduced by analogy: c = (2moc2/2mo)'~2 is to
be replaced by u = (e~/2mo )'~2 = 1.3 x 108 cm s

According to the special theory of relativity, ' the
drift velocity in crossed fields is ud„——cE/H, as long as
cE/H ( c. (The same is true for the two-band system,
as long as cE/H ( u. ) If a Lorentz transformation is
made to a coordinate frame moving with vd, with
respect to the laboratory frame, the electric field in the
moving frame disappears and the magnetic field is
weakened: H' = H (1 —E /H ) '~ . This amounts to
the proportional decrease of the cyclotron frequency.
In a vacuum there is E /H = vd„/c, which in the
two-band model is to be replaced by v2d„/u
= (cE/H ) (eg/2m 0 ) '. Thus the semirelativistic
analogy gives H' = H (1 —5 ) '~, which corresponds
precisely to

Aced,

(l —5 )'~ in Eq. (4). (The spin split-
ting behaves somewhat differently since it is governed
by the spin-orbit interaction of atomic origin, which
does not have correspondence in the free-electron
case. ) Thus, in the moving system the electron energy
is given by the square root of the square bracket in Eq.
(3). However, the observation is made in the labora-
tory so that the energy has to be Lorentz transformed
back to that system. This is done with the four-vector
(p, e/c ), involving the energy as the fourth com-
ponent. This gives the complete expression (4), when
the above mentioned replacements are made.

It is of interest that the difference of eI + & k

=A cv can be interpreted as the transverse
X

Doppler shift (TDS) of the radiation frequency ruo

emitted by a moving source. ' This is related to the
Voigt geometry of our experiment. In the special
theory of relativity TDS is described by
cu = coo (1 —v2/c z) '~2, which corresponds to the
(1 —5 )'~2 term in front of the square root in Eq. (3).
It should be emphasized that the increase of the mass
shown in Fig. 2 is, in fact, approximately proportional
to (1 —h2) ', as follows from Eq. (3) in the limit of
has, « eg. The truly relativistic transverse Doppler
shift is rather difficult to observe and it was first mea-
sured in 1938 (see Ives and Stilwell'7). In the theory
of relativity TDS is considered to be a direct manifes-
tation of the time dilatation.

It should be borne in mind that we not deal in reality
with truly relativistic drift velocities of conduction
electrons: vd„= 0.85 & 10 cm s ' for the highest point
on the upper curve. The semirelativistic increase of
the cyclotron mass is so well observable because u in
the semiconductor is almost 10 times smaller than c .
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