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Velocity of Longitudinal Sound and F2 in Liquid He
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Precise measurements of the velocity of 5-MHz longitudinal sound in liquid 'He have been made
over a broad range of temperatures (0.3 to 30 mK) and pressure (0.3 to 34 bars). The zero-
temperature asymptotic velocity in the B-phase superfluid is measured and found to be the same as
the hydrodynamic value in the normal Fermi liquid, The pressure dependence of F2, the second
symmetric Landau parameter for the Fermi liquid, is deduced.

PACS numbers: 67.50.Dg, 67.50.Fi

Liquid He has become the archetypical "normal
Fermi liquid" in which the physics of an interacting,
degenerate system of fermions has been studied. The
properties of such a system are dependent on the
scattering amplitude, F(X), between two quasiparticles
(elementary excitations) near the Fermi surface,
where X is the angle between the momenta of the two
particles. As was first described by Landau' and then
generalized by Khalatnikov and Abrikosov, 2 it is con-
venient to expand F(X) in spherical harmonics, the
coefficients of the expansion (Ft' and Ft') then appear-
ing like molecular fields in calculations of the various
quantities and response functions of the system.

Landau realized that, depending on the detailed na-
ture of F(X) and hence Ft' and Ft' (which cannot be
known a priori), various new types of propagating col-
lective modes might be observed in liquid He and
other similar systems. Originally he and others used
measurements of the compressibility and heat capacity
to determine I'0 and I"I, which then led to the predic-
tion of two kinds of "sound" in He. One, ordinary or
first sound, propagates when its period of oscillation
2m/to is long compared to the quasiparticle collision re-
laxation time r (tow « 1). Another, zero sound,
propagates in the opposite limit (con » 1). Zero
sound exists in the long-mean-free-path limit, when
collisions become unimportant (the collisionless lim-
it), and can be generated by density fluctuations simi-
lar to ordinary sound. This mode can be thought of as
an asymmetric distortion of the Fermi surface with a
restoring force applied to each quasiparticie caused by
the molecular fields (represented by the Ft') generated
by all the other quasiparticles. It is therefore natural to
use sound measurements to determine various of the
I'I' or Landau parameters.

We have measured the velocity of 5-MHz longitudi-
nal sound in liquid He over a wide range of tempera-
ture (0.3 to 30 mK) and pressure (0.3 to 34 bars).
The velocity was measured relative to its tem-
perature-independent first-sound value, c&, in the nor-
mal Fermi liquid. At lower temperatures, but still in
the normal Fermi liquid, v increases such that
co7 )& 1 and zero sound propagates. The velocity of

zero sound, co, is greater than that of first sound, c&,
by only a few percent and would be maintained to zero
temperature if it were not for the onset of superfluidi-
ty. At the superfiuid transition temperature, T„ the
zero-sound velocity begins to decrease back toward c&

and approaches an asymptotic value for T/T, & 0.4 at
a11 pressures. We have measured the velocity well
along this temperature-independent asymptote and
found it to be that of first sound as theoretically ex-
pected for the fully developed condensate. s Using the
difference between the zero- and first-sound veloci-
ties, we have deduced the I =2 symmetric Landau
parameter, I'z, as a function of pressure. Our deter-
minations are consistent with others 5 obtained from
longitudinal-sound velocity measurements.

The sound measurements were made by propagating
5-MHz sound pulses between two x-cut quartz crystals.
The helium sample was defined by an epoxy spacer
with a low-temperature length of 6.25 mm and 5.0 mm
inside diameter separating the quartz transducers. A
286-G magnetic field was applied to the helium paral-
lel to the direction of sound propagation. The nuclear
susceptibility at 250 kHz of ' Pt powder immersed in
the helium immediately next to the sound ceil was
used for thermometry with the superfluid transition,
identified by the kink in the sound amplitude, serving
as a fixed point.

The sound cell and thermometer were mounted on a
heat exchanger together with a strain gauge which was
used in a feedback loop to determine and regulate the
helium pressure. The pressure was regulated by use of
the error signal from the strain gauge measurement to
control the pressure of liquid He contained in a bel-
lows. This bellows was mechanically connected to a
second bellows, which, being part of the He con-
tainer, could change the volume of the He sample.
Since the sound velocity is strongly pressure depen-
dent, this pressure regulation of AP/P —10 s put an
upper limit on the precision of the velocity measure-
ments of b, c/c —10 in the worst case. Cooling was
achieved by demagnetization of 60 moles of copper
from 25 mK and 8.7 T. Many further experimental
details are available in the work of Berg and Ihas. 7
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The received sound signal was split, with half detect-
ed and signal averaged for amplitude determination,
and half sent to a phase-measurement circuit. The
phase and hence sound velocity of the received signal
were monitored by mixing the signal with the output
of a 5-MHz synthesizer. The phase of the reference
signal was modulated by the amplified output of the
doubly balanced mixer. This was accomplished with
use of a boxcar integrator to measure the filtered,
mixed signal with a 1-p,s-wide gate timed to coincide
with the first received sound pulse. As the phase
velocity changed, the output from the boxcar shifted
the phase of the reference, tending to maintain the
mixer output at a constant level. Hence, in this high-
gain, phase-locked loop, the change in the boxcar out-
put potential is directly proportional to the change in
the phase of the sound signal over several factors of
2m. . Then the relative change in phase velocity from
c &, used as a reference point, is
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4~ —4 is the change in the phase relative to its value
at high temperature, c~ is the first-sound velocity, ~ is
the sound frequency, and I is the cell length.

The phase-measurement scheme used here is slight-
ly dependent on the signal amplitude. Since this am-
plitude varied by more than 2 orders of magnitude
over the temperature range studied, the precision of
these measurements required that this effect be re-
moved from the results. This was done by our cali-
brating the dependence of the phase on amplitude and
then using the simultaneously measured amplitude to
correct the phase measurement. This correction was
always small ( & 6'/o) for the measurements used here
to determine F2. However, since each calculation in-
volves the difference of two nearly equal quantities,
this correction is important.

Figure 1 shows the zero-temperature asymptotic
velocity relative to c~ plotted against pressure. The
velocity was found to approach c& within the experi-
mental precision. Note that the error in these points is
greater than the 1 part in 10~ capability of the mea-
surement system. This is mainly due to the measured
voltages proportional to these velocities being very
near zero. At 0.32 bar we did not cool fully into the
asymptotic region so that an extrapolation was neces-
sary, resulting in increased error. These measure-
ments thus verify the theoretical prediction that the
velocity would return to the hydrodynamic value as
the superfluid condensate fully developed. Also, be-
cause the velocity is identical to that in the normal
Fermi liquid, the bulk compressibility and density thus
remain constant to zero temperature, in spite of the in-
tervention of the superfluid phase.

F2 can be deduced from the difference in first- and
zero-sound velocities. If we ignore higher-order Lan-

dau parameters, we have
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where Fp is the l = 0 symmetric Landau parameter ob-
tained from other experiments and vF is the Fermi
velocity. Zero sound is realized in the limit co~ && l.
Thus, for sufficiently high frequency the zero-sound
velocity cp can be measured in the normal liquid just
above T, . However, for the 5-MHz sound used in this
experiment, at T, and high pressure this is not the case
(e.g. , at 34 bars co~ = 3). Therefore, the velocity at T,
is somewhat less than cp and corrections for finite eve

must be invoked. For arbitrary frequencies the veloci-
ty of sound is given by

c = c, + (co —c, )Re((t0),

where

((t0) = (I +i/ru7).
and ~ is the characteristic relaxation time for sound
attenuation. The desired difference in the zero- and
first-sound velocities may then be written

Cp —Ci

C)

C Ci 11+
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where c is the actual measured velocity. This correc-
tion is the greatest at the melting pressure where it is—12% and insignificant at low pressure where it is
—0.1'/0. The value of co~ at T, as a function of pres-

FIG. 1. Zero-temperature asymptotic velocity of sound
measured relative to the first-sound velocity (as percentage)
vs pressure.
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FIG. 2. Points are measured differences of zero- and
first-sound velocities (ct) normalized to ct. Curve is the
theoretical prediction [Eq. (1) in text] with F2 =—0.

sure was obtained from v„T data tabulated by Wheat-
ley where ~ is the characteristic relaxation time or
viscosity. Comparison of ~ measuremen st 4' with
those of 7„show them to be equal to within 5'/0, but

because the 7„data completely cover the full pressure
range they were used in the correction in place of ~ .

Because the velocity was found to return to ci at the
lowest temperatures, we could increase precision in
the determination of F2 by taking the phase difference
from this asymptote and that at T, to obtain
(ca —c, )/c, . Figure 2 is a plot of (co —ct)/ct vs pres-
sure. The points are our measurements corrected or
finite co7 and the curve is the theory with F2 =0 and
Fo as scaled by specific-heat measurements of
Greywall and Busch. ' Thus, the deviation of the
points from the curve is a measure of F2.

Figure 3 is a plot of F2 vs pressure. The points are
our determinations as given by Eq. (I). The curve is a
least-squares fit, described in the caption, and is
presented as an aid in calculations involving F2.

Figure 4 is a plot of F2 as calculated from our veloci-
t measurements, but using the older values of Foy me

o ~ 9found in the Wheatley review article. This was done
to facilitate comparison with previous determinations
of F2, but it also shows the sensitivity of F2 to m'/m
determinations. As can be seen, good agreement is
found with the earlier work in which F2 was obtained
from longitudinal velocity measurements. Howev-
er, more recent values" obtained from absolute at-
tenuation measurements are not consistent with our
results.

For certain values' of Landau parameters, a
transverse zero-sound (TZS) mode is predicted to ex-
ist: Ft +3Fz/(I+ —,

'
F2 ) & 6. Various attempts'2 '3 to
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FIG. 3. Points are F2 values obtained from our velocity

measurements and Eq. (1) with Fo from Ref; 10. The curve
S/2.is a cubic least-squares fit in P

I'2 = —1.264+ 0.896P' ' —0.187P + 0.0163P
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'h F'FIG. 4. I'2 as determined by various workers, with 0

from Ref. 9. This work, diamonds; Ref. 4, squares; Ref. 5,
triangles; Ref. 11, inverted triangles. The curve is a least-
squares fit to our data.
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detect this mode by acoustic impedance techniques
have resulted in determinations of F2 which are mostly
negative, except at very low pressure. Our values of
F2, together with the above expression, would pre-
clude the existence of TZS at pressures below 3.4 bars
(using scaled values' of F; ). Another feature of the
TZS determinations of F2 is that they appear to be fre-
quency dependent. The above circumstances lead to
the conclusion' that these acoustic impedance mea-
surements cannot be analyzed as pure TZS, casting
doubt on their determination of F2.

In conclusion, the sound measurements in liquid
sHe presented here show the following: (I) The
velocity asymptotically approaches c&, the hydro-
dynamic velocity, as the temperature approaches zero.
Hence, the sound propagation is a collective mode of a
fully developed BCS condensed state. Also, as expect-
ed, the superfluid transition has no effect on the den-
sity and compressibility of the liquid. (2) Because of
(I), the difference between the zero- and first-sound
velocities (co —ct) can be measured quite precisely,
yielding rather good determinations of the Landau
parameter F2. In turn, F2 can now be used to calculate
better the properties and responses of liquid He (e.g. ,
sound velocity and attenuation, frequencies of the su-
perfluid gap modes, and the pressure range of the ex-
istence of transverse zero sound). (3) The results
agree with other similar, less precise measurements,
but the new values of F2 disagree with those recently
obtained from longitudinal-sound attenuation mea-
surements and transverse zero-sound (TZS) acoustic-
impedance experiments. In the longitudinal-sound
case, this is probably due to the increased difficulty of
making precise absolute attenuation measurements
which depend on the temperature scale used. In the
case of TZS, the disagreement may arise from the
highly (over?)damped nature of the mode.
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