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Silver Films Condensed at 300 and 90 K: Scanning Tunneling Microscopy
of Their Surface Topography
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Scanning tunneling microscopy shows that warm-condensed Ag films consist of a gently rolling
surface topography with compact boundary regions. In contrast, cold-condensed films retain struc-
ture on the nanometer scale after annealing to room temperature: These intercrystallite channels
or trenches show a strong similarity in width ( ( 1—3 nm), separation (5—15 nm), and possibly
depth [3—( & 4.5) nm] to the surface topographic models for surface-enhanced —Raman-scattering
activated films. This suggests that postannealing does not imply the annihilation of channels, also
termed "pores" or "cavities, " postulated by some current models.

PACS numbers: 68.20.+ t, 73.40.Gk, 78.30.Er

The renewed interest, during the last few years, in
metallic films condensed on low-temperature sub-
strates can be ascribed mainly to the strong surface-
enhanced Raman scattering (SERS) observed from
molecules adsorbed on their surfaces. ' Although
general agreement exists on the fact that some type of
roughness is a necessary prerequisite for SERS, the
relevant scale of roughness is still under debate. Un-
fortunately, the experimental difficulties associated
with in-situ low-temperature measurement of the to-
pography of cold-condensed films appear to represent
a major obstacle for electron microscopic investiga-
tions. Furthermore, until recently there was a lack of
suitable microscopic methods to study nonideal surface
topographies in real space with the required near-
atomic resolution. One attempt to overcome these dif-
ficulties was to stabilize the roughness relevant to
SERS by overcoating cold-condensed Ag films with a
thin layer of aluminum oxide and then warming the
film to room temperature4 (postannealing). Subse-
quent transmission electron microscopic (TEM) stud-
ies of carbon replicas of the overcoated films revealed
a high density of roughness by features with lateral
dimensions = 10-20 nm, whereas uncoated Ag films
were smooth on this scale. At present, it is unclear
whether the aluminum-oxide coating itself contributes
to the features observed. TEM investigations of thick
continuous Ag films have been reported for samples
condensed at room temperature or above. 5 Several in-
direct methods have been recently applied to the in-
vestigation of cold-condensed Ag surfaces, including
photoemission, 7 Auger electron spectroscopy, work
function, thermal desorption, and optical measure-
ments. Despite the activity, the models reported for
the surface topography are mainly speculative. Albano
et al. , for example, have postulated that cold-
condensed Ag films are "porous" in the sense that the
surface consists of almost-flat plateaus (5—15-nm
width) separated by crevices about 0.5—1.5 nm wide.
Seki and Chuang envision the pores to be 1-3 nm
wide and —15 nm deep and call them "cavity sites. "

For Otto et al. , ' the pores are of atomic-scale dimen-
sions with "boundaries between crystallites corre-
sponding roughly to two-dimensional nets of vacan-
cies."

It is important to note that SERS activity of cold-
condensed films is irreversibly lost upon annealing to
room temperature. ' " For Albano et aI. ,6 this gives
evidence of the disappearance of pores.

The purpose of this Letter is to report, for the first
time, on the experimentally measured topographies of
warm-condensed and cold-condensed Ag films, post-
annealed after pyridine adsorption, in a comparative
fashion by use of the technique of scanning tunneling
microscopy (STM).' The development of STM by
Binnig, Rohrer, and co-workers has opened new possi-
bilities for the study of three-dimensional real-space
images of surfaces with a lateral resolution of several
angstroms. The results demonstrate that, for cold-
condensed films, the preanneal surface structure does
not completely "heal. " Atomic-scale trenches & 1—3
nm in width, 3—( & 4.5) nm in depth, and separated
by 5—15 nm are clearly resolved, although the trench
depth is underestimated by the limitation of tip
penetration. In contrast, warm-condensed films are
rather flat with gently rolling areas separated by boun-
daries. On the basis of the good agreement in the
shape and size between postannealed films and the
model postulated for surface topography of cold-
condensed SERS-active surfaces, we interpret the
trenches as evidence for remaining pores.

A description of the STM technique is given in Ref.
12. Our STM is based on the design by Binnig, Rohr-
er, and co-workers with minor differences for sample
translation and transfer. Ag films were prepared in a
standard UHV system by controlled condensation of a
thick layer ( & 1000 A) onto a polished copper sub-
strate which could be cooled to 90 K. For the cold-
condensed films, pyridine was adsorbed prior to an-
nealing. The same substrate was used to prepare cold-
and warm-condensed films which were characterized
by photoemission spectroscopy. ' A thick film of pyri-
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pearance of channels produced by cold condensation of
Ag.

It is a pleasure to thank G. Binnig, H. Rohrer,
E. Stoll, A. Baratoff, and Ch. Gerber for helpful dis-
cussions. D. Widmer and F. Rohner provided invalu-
able assistance with technical problems.
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FIG. 3. A schematic illustration of the scanning of the tip
across a trench site for (a) a narrow trench and (b) a wide
trench with respect to the tip dimensions. Both topography
and the corresponding STM graph are shown.

trench edges. '9

The second important feature of STM is that surface
topography is recorded by maintaining —@ti2s at a
constant value. ' For a W tip and Ag surface, @ is es-
timated to be —4 eV. Local deviations in @ can give
rise to apparent topographical effects. On the top of
the trench sites in Fig. 2, s was estimated to be ( 1

nm. Possible topographic changes corresponding to
trenchlike structures would result from a local increase
in @. However, such an increase in @ would result in
only a subnanometer displacement of the tip. This ef-
fect is of insufficient magnitude to account for the
depths of the structures observed. As a result of the
small tip-to-surface separation estimated above, we as-
sign the trenches to topographic features.

To summarize our interpretation of the STM graphs,
most of the features are surface topographical except
in narrower trench sites as discussed previously. Devi-
ations due to possible barrier-height variations are of
negligible importance of the scale of the measure-
ments presented.

Postannealing results in a surface topography very
similar to the schematic model for cold-deposited
SERS-active surfaces, 6 despite the fact that annealing
causes a loss in SERS activity. However, parallel pho-
toemission measurements at 300 K' clearly indicate
that cold-condensed Ag films, where pyridine was
preadsorbed at low temperature, retain spectral
features characteristic7 of SERS-active cold-condensed
films. Our experiments show that "poreicavity"
structure is clearly evident after postannealing of thick
cold-condensed Ag films pretreated by pyridine ad-
sorption. Postannealing is known to cause a modifica-
tion of the surface topography. However, the deac-
tivation of SERS does not imply the complete disap-
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